
SerDes Toolbox™
User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SerDes Toolbox™ User's Guide
© COPYRIGHT 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

SerDes Toolbox Topics
1

Fundamentals of SerDes Systems . 1-2

Customize SerDes System in MATLAB . 1-4

Clock and Data Recovery in SerDes System 1-7
Phase Detector . 1-7
Recovering Clock Signal . 1-10

Analog Channel Loss in SerDes System 1-18
Loss Model from Channel Loss Metric 1-18
Loss Model from Impulse Response 1-19
Introducing Cross Talk . 1-19

Manage IBIS-AMI Parameters . 1-21
Contents of IBIS File . 1-21
Contents of AMI File . 1-22

SiSoft Link . 1-23

SerDes Toolbox Interface for SiSoft Quantum Channel
Designer and QSI Software . 1-24

Customize SerDes Systems
2

Customizing SerDes Toolbox Datapath Control Signals 2-2

Find Zeros, Poles, and Gains for CTLE from Transfer Function
. 2-13

iii

Contents

Customize IBIS-AMI Models
3

Managing AMI Parameters . 3-2

Industry Standard IBIS-AMI Models
4

PCIe4 Transmitter/Receiver IBIS-AMI Model 4-2

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model 4-17

DDR5 Controller Transmitter/Receiver IBIS-AMI Model 4-29

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model 4-42

USB3.1 Transmitter/Receiver IBIS-AMI Model 4-52

Design DDR5 IBIS-AMI Models to Support Back-Channel Link
Training . 4-63

iv Contents

SerDes Toolbox Topics

• “Fundamentals of SerDes Systems” on page 1-2
• “Customize SerDes System in MATLAB” on page 1-4
• “Clock and Data Recovery in SerDes System” on page 1-7
• “Analog Channel Loss in SerDes System” on page 1-18
• “Manage IBIS-AMI Parameters” on page 1-21
• “SiSoft Link” on page 1-23
• “SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software”

on page 1-24

1

Fundamentals of SerDes Systems
Modern high-speed electronic systems are characterized by increased data speed
integrated circuits (ICs). The input/output performance remains the bottleneck that limits
the overall performance of a high-speed system. Serial data transfer is the most efficient
way of communicating large data quickly between computer chips on printed circuit
boards through copper cables and through short, medium, and long length fiber optics.

Thus, many systems now aggregate and serialize multiple input/ output (I/O) signals for
transmission across fiber and copper cables and PCBs at a higher data rate, recovering
and de-serializing the individual signals on the receiving end. These SerDes
(Serializer/De-Serializer) implementations employ additional silicon real estate to perform
sophisticated equalization required for reliable signal transmission at very high data
speeds. This approach helps maximize throughput at the system level.

SerDes design is a complex, iterative process that typically starts with a baseline SerDes
system that demonstrates the feasibility of a design approach. This system also
establishes budgets for the different parts of the serial channel and associated
transmitter (TX) and receiver (RX) equalization circuitry. The data that describes the
desired behavior of each of the equalization filters in both the transmitter and the
receiver is then back-annotated in the behavioral models with the correlation with
simulations or measurements. The final step is to implement the training algorithms and
control loops that will be executed by the chip during startup and from time to time when
the channel needs to be retrained.

The SerDes system is then compiled into IBIS-AMI (Input/Output Buffer Information
Specifications — Algorithmic Model Interface) models.

There are six sections of a SerDes system:

• TX equalization — This becomes the IBIS-AMI dll for the transmitter.
• TX AnalogOut — This becomes the analog model of the transmitter. It is part of the

IBIS model for TX, and is typically represented by the I-V and V-T characteristics
curves in the .ibs file.

• Channel — This becomes the model of the physical channel, including the TX and RX
package models.

• RX AnalogOut — This becomes the analog model of the receiver. It is part of the IBIS
model for RX, and is typically represented by the I-V and V-T characteristics curves in
the .ibs file.

1 SerDes Toolbox Topics

1-2

• RX equalization — This becomes the IBIS-AMI dll for the receiver.
• Training algorithms and control loops — These become the on-chip microcode that is

executed inside of the chip during startup and when the channel needs to be
retrained.

 Fundamentals of SerDes Systems

1-3

Customize SerDes System in MATLAB
Open the SerDes Designer app. In the CONFIGURATION tab of the app toolstrip, set
Symbol Time (ps) to 125 and Target BER to 1e-12.

In a new blank canvas, add an FFE block to the Tx side. Add an AGC, a CTLE and a
DFECDR block to the Rx side.

Select the channel block. Set Channel loss (dB) to 13.

From the EXPORT tab of the app toolstrip, select Generate MATLAB code for SerDes
System. A MATLAB® script open that represents the command line interface to the
SerDes system.

The MATLAB script contains the code to generate the transmitter and receiver building
blocks and analog models. It also contains the channel information and SerDes system
configuration. The script exposes every parameter that is part of the SerDes system. You
can modify the parameters to further explore the SerDes system.

For example, to see the effect of Channel loss on the SerDes system, scroll down to the
section of the MATLAB script that says % Build ChannelData. Replace the default
code section with the following code:

% Build ChannelData:
channelLoss = 5;
channel = ChannelData(...
 'ChannelLossdB',channelLoss, ...
 'ChannelLossFreq',5000000000, ...
 'ChannelDifferentialImpedance',100);

Save the change and run the script. Keep changing the value of channelLoss to see the
effect of changing channel loss.

1 SerDes Toolbox Topics

1-4

The eye diagram when the Channel loss is set to 5 dB:

The eye diagram when the Channel loss is set to 16 dB:

 Customize SerDes System in MATLAB

1-5

After you finalize the SerDes system with your desired Channel Loss, you can export the
MATLAB script of the SerDes system as a Simulink® model. From the Simulink canvas,
you can perform further time-domain analysis, or export the system to a AMI model.

1 SerDes Toolbox Topics

1-6

Clock and Data Recovery in SerDes System
In this section...
“Phase Detector” on page 1-7
“Recovering Clock Signal” on page 1-10

High-speed analog SerDes systems use clock and data recovery (CDR) circuitry to extract
the proper time to correctly sample the incoming waveform. The CDR circuitry creates a
clock signal that is aligned to the phase and to some extent the frequency of the
transmitted signal. Phase tracking (first order CDR) is usually accomplished by using a
nonlinear bang-bang or Alexander phase detector that drives a voltage-controlled
oscillator (VCO). Frequency tracking (second order CDR) integrates any remaining phase
errors and compensates for gross differences between the transmitter reference clock
and the receiver reference clock. serdes.CDR and serdes.DFECDR use the first-order
CDR algorithm.

Phase Detector
The Alexander or bang-bang phase detector samples the received waveform at the edge
and middle of each symbol. The edge sample (en) and data samples (dn-1 and dn) are
processed with some digital logic to determine if the edge sample, and thus the clock
phase, is early or late. The edge sample, en, and data sample, dn, are separated by half of
a symbol time.

Consider the waveform where a data transition has occurred, and both en and dn are
below the decision threshold voltage. The binary values resolved from en and dn match,
which indicates the clock phase is late.

 Clock and Data Recovery in SerDes System

1-7

Similarly, when the binary values resolved from en and dn-1 match, the clock phase is early.

1 SerDes Toolbox Topics

1-8

Representing the binary output of the sampler by ±1, the behavior of the phase detector
is summarized here.

dn-1 en dn Action
-1 -1 1 Clock phase is early. Shift phase to the right.
1 1 -1
-1 1 1 Clock phase is late. Shift phase to the left.
1 -1 -1
-1 X -1 No action is necessary.
1 X 1

 Clock and Data Recovery in SerDes System

1-9

Driving the VCO directly from the phase detector output results in excessive clock jitter.
To eliminate the jitter, the output of the phase detector is lowpass filtered by
accumulating it in a vote. When the accumulated vote exceeds a specific count threshold,
the phase of the VCO is incremented or decremented.

Recovering Clock Signal
Recover the clock signal from a repeating pseudorandom binary sequence (PRBS9)
nonreturn to zero (NRZ) signal. Consider the channel has 4 dB loss, the phase step size is

1
128 , the vote count threshold is 8, and that there are no phase or reference offsets.

The baseline behavior is shown with the eye diagram and the resulting clock probability
distribution function (PDF). The PDF is very near the center of the eye. The clock phase
settles between a value of 0.5703 symbol time and 0.5781 symbol time. The dithering
between the two values is a consequence of the nonlinear bang-bang phase detector and
is the source of CDR hunting jitter. To reduce the magnitude of dithering, reduce the
phase step size. To reduce the period of dithering, reduce the vote count threshold.

1 SerDes Toolbox Topics

1-10

The output of the phase detector is accumulated in the early/late vote count. When the
count exceeds the vote count threshold, the phase is incremented or decremented. To
accelerate CDR convergence, the count threshold starts at 2, and each time the
magnitude of the vote exceeds the threshold, the threshold is incremented until it reaches
the maximum count. This figure shows the first 350 symbols of the early/late count (blue)
and the threshold (dashed red line). Internal to the CDR block, the vote is incremented or
decremented, checked against the threshold and then reset if necessary. The external
vote value shown in figure below does not touch the threshold but is evident when the
vote is reset to 0.

 Clock and Data Recovery in SerDes System

1-11

To show the clock converging to a different phase, change the channel loss to 2 dB. The
clock phase now adapts to around 0.35 symbol time.

1 SerDes Toolbox Topics

1-12

Increasing the vote count threshold to 16 results in a larger dithering period.

 Clock and Data Recovery in SerDes System

1-13

Increasing the phase step size to 1
64 increases the dithering magnitude.

1 SerDes Toolbox Topics

1-14

Manually shifting the data sampler location when the equalized eye does not display left/
right symmetry can maximize the eye height. For example, shift the clock phase to the
right by 18 of a symbol time to shift the output clock phase from 0.57 symbol time to 0.7
symbol time.

 Clock and Data Recovery in SerDes System

1-15

You can also inject a small amount of reference clock frequency offset impairment to
implement a more realistic CDR.

1 SerDes Toolbox Topics

1-16

References
[1] Sonntag, J. L. and Stonick, J. "A Digital Clock and Data Recovery Architecture for

Multi-Gigabit/s Binary Links." IEEE Journal of Solid-State Circuits, 2006.

[2] Razavi, B. "Challenges in the design high-speed clock and data recovery circuits."
IEEE Communications Magazine, 2002.

See Also
CDR | DFECDR | serdes.CDR | serdes.DFECDR

 See Also

1-17

Analog Channel Loss in SerDes System
In this section...
“Loss Model from Channel Loss Metric” on page 1-18
“Loss Model from Impulse Response” on page 1-19
“Introducing Cross Talk” on page 1-19

One of the important limiting factors in high-speed data transmission is the loss in the
channel due to cross talk, attenuation, and reflection noise. The Analog Channel block
and serdes.ChannelLoss System object™ parameterize a channel model that
represents a lossy transmission line typical in high-speed SerDes application. The loss
model is constructed either from a channel loss metric or from an impulse response from
another source.

Loss Model from Channel Loss Metric
A discrete time, band-limited analog impulse response characterizes the
serdes.ChannelLoss System object. It represents the response of a system to an
impulse response vector with an impulse of 1

dt , where dt is the sample interval.

To calculate the impulse response, serdes.ChannelLoss first calculates the S-
parameter component S21 according to channel loss at frequencies ranging from 0 to
fmax, maximum frequency of interest, where fmax = 1

dt . This is done by determining the
loss at the target frequency, and then linearly extrapolating required channel length to
achieve target channel loss. Then transmitter and receiver termination S-parameter are
then calculated according to the equations 93A-17 and 93A-18 from the IEEE
802.3bj-2014 specifications [1].

After calculating S21, the System object adds the negative frequency data points so that
the real components of S21 have even symmetry and the imaginary components of S21
have odd symmetry about 0 Hz. The impulse response is calculated from the inverse
Fourier transform of S21. Finally, the impulse response is resampled so that the sample
interval is dt.

1 SerDes Toolbox Topics

1-18

Loss Model from Impulse Response
To construct a loss model from an impulse response vector, input the impulse response
vector from another source. You can also define the impulse sample interval. Changing
the symbol time and number of samples per symbol changes the data rate of the SerDes
system. If you change the data rate you have to define the impulse sample interval for the
specified data rate.

Introducing Cross Talk
You can include the effects of cross talk in the time domain simulation using a custom
impulse response from the SerDes Designer app. The impulse sample interval, which
defines when the cross talk impulse response is sampled, must match the simulation time
step.

To introduce cross talk in Simulink, first place the cross talk impulse responses as input to
the FIR filters. Then add the cross talk stimulus blocks with a pattern and phase offset to
combine with the through path. If necessary, manually resample the cross talk impulse
response to match simulation step time.

References
[1] IEEE 802.3bj-2014. "IEEE Standard for Ethernet Amendment 2: Physical Layer

Specifications and Management Parameters for 100 Gb/s Operation Over
Backplanes and Copper Cables." https://standards.ieee.org/standard/
802_3bj-2014.html.

 Analog Channel Loss in SerDes System

1-19

https://standards.ieee.org/standard/802_3bj-2014.html
https://standards.ieee.org/standard/802_3bj-2014.html

See Also
Analog Channel | serdes.ChannelLoss

1 SerDes Toolbox Topics

1-20

Manage IBIS-AMI Parameters
You can manage the IBIS-AMI parameters by opening the SerDes IBIS-AMI Manager
dialog box from the Configuration block.

Contents of IBIS File
The IBIS tab in the SerDes IBIS-AMI Manager dialog box defines the content of the IBIS
file. Set the parameters used to define the IBIS file in the AnalogOut and AnalogIn blocks
in the SerDes Designer app and in the IBIS tab in the SerDes IBIS-AMI Manager.

From the transmitter side in the AnalogOut block:

• Voltage (V) — Typical value of voltage range in the IBS file.
• R (Ohms) — Slope of the typical pull-up and pull-down IV curves in the IBS file.
• C (pF) — Typical value of the C_comp in the IBS file.

From the receiver side in the AnalogIn block:

• Voltage (V) — Typical value of voltage range in the IBS file.
• R (Ohms) — Slope of the typical ground clamp IV curve in the IBS file.
• C (pF) — Typical value of the C_comp in the IBS file.

You can only enter the typical values for these parameters. You can define the Tx and Rx
corner percentage in the Export tab of the SerDes IBIS-AMI Manager dialog box. The
minimum and maximum values are generated by subtracting or adding to the typical
value its fractional corner percentage.

The performance of an input/output (I/O) buffer is a function of process, voltage, and
temperature (PVT). There are 27 PVT corners. IBIS supports three model corners: Typ,
Min, and Max. When generating the IBIS file, the Voltage (V), R (Ohms), and C (pF)
values are used for the Typ corner.

• Min refers to the slow/weak corner. It groups slow process, low voltage, and high
temperature. The voltage and resistance are decreased and the capacitance is
increased for the Min corner.

• Max refers to the fast/strong corner. It groups fast process, high voltage, and low
temperature. The voltage and resistance are increased and the capacitance is
decreased for the Max corner.

 Manage IBIS-AMI Parameters

1-21

Contents of AMI File
The AMI - Tx and AMI - Rx tabs in the SerDes IBIS-AMI Manager dialog box define the
content of the AMI file. They contain the required and commonly used reserved AMI
parameters. You can also define the model-specific parameters for the relevant blocks.

There are five reserved AMI parameters included in every AMI file generated by the
SerDes Toolbox:

• AMI_Version — IBIS version supported by the model
• Init_Returns_Impulse — whether the model supports statistical simulation or not
• GetWave_Exists — whether the model supports time-domain simulation or not.
• Max_Init_Aggressors — the number of crosstalk aggressors supported by the model
• Modulation — the modulation scheme of the model.

You can also define and modify the parameters of individual transmitter and receiver
blocks. From the model specific parameters, you can add new AMI parameters to specific
blocks. For more information, see “Managing AMI Parameters” on page 3-2.

You can also add a new tap structure to the equalizer blocks. These additional taps are
included both in the Simulink model and the exported IBIS-AMI models. The taps enable
you to adjust equalization, especially when you build your custom blocks from scratch.

You can also include standard-compliant transmitter and receiver jitter and noise
parameters to the Reserved Parameter section of the AMI file. The jitter and noise
parameters are only used in EDA tools. Simulink ignores these parameters.

See Also
Configuration

More About
• “Managing AMI Parameters” on page 3-2

External Websites
• https://ibis.org

1 SerDes Toolbox Topics

1-22

https://ibis.org

SiSoft Link
The SiSoft Link app is used to test the SerDes models developed in Simulink using SerDes
Toolbox in SiSoft Quantum Channel Designer (QCD) and Quantum Signal Integrity (QSI)
software. You can transfer the data required to reproduce a QCD or QSI test case back to
Simulink® for debugging and refinement. You need SiSoft 2018.07-SP4 or later software.

Using the SiSoft Link app, you can:

• Create a QCD project.
• Create a QSI project.
• Import QCD or QSI simulation data into Simulink.
• Update QCD or QSI with new data from Simulink.

To test the SerDes model in QSI or QCD software, first download the SerDes Toolbox
Interface for SiSoft Quantum Channel Designer and QSI Software from the Add-On
Explorer. For more information on downloading add-ons, see “Get and Manage Add-Ons”
(MATLAB).

To access the SiSoft link app:

• From the Apps tab in the MATLAB toolstrip, click on SiSoft Link app icon.
• In the MATLAB command prompt, enter sisoftLink.

See Also

More About
• “SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software”

on page 1-24

External Websites
• https://sisoft.com

 SiSoft Link

1-23

https://sisoft.com

SerDes Toolbox Interface for SiSoft Quantum Channel
Designer and QSI Software

This example shows how to use SerDes Toolbox Interface for SiSoft Quantum Channel
Designer and QSI Software support package to test IBIS-AMI SerDes models developed in
Simulink using SerDes Toolbox, in SiSoft Quantum Channel Designer (QCD) or Quantum
Signal Integrity (QSI) software. You can transfer the data required to reproduce a QCD or
QSI test case back to Simulink for debugging and refinement. You need SiSoft 2018.07-
SP4 or later software to run this example. You must also have installed the SiSoft Link
app provided with the support package.

SerDes Development Flow

SerDes model development begins with the SerDes Designer app. The app exports a
Simulink model with transmitter (Tx) and receiver (Rx) SerDes models and a testbench to
simulate and further develop the SerDes designs. Test the models in QCD or QSI to verify
proper IBIS-AMI model operation in a target EDA tool. Due to the high performance of
IBIS-AMI executable models, run many simulations to verify the full range of model
capabilities, testing with all possible AMI parameters and a variety of stimuli and
interconnect channels. Replicate the simulation cases warranting closer inspection in
Simulink to reproduce and debug the test. Repeat this cycle as many times as needed,
updating the QCD/QSI project and Simulink model.

Create SerDes Toolbox System Model

Open the SerDes Designer app from the Apps toolstrip. Use the app to quickly prototype
and statistically analyze a SerDes system with a Tx and an Rx.

1 SerDes Toolbox Topics

1-24

Add blocks from the Blocks gallery to the Tx and Rx sides. If you change the block
parameters, the statistical eye display shows the performance changes. Click on Export
SerDes System to Simulink from the Export dropdown menu to create a Simulink
model for the system.

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

1-25

Prepare SerDes Simulink Model for QCD/QSI

The SiSoft QCD and QSI software requires IBIS models to simulate the Tx and Rx of your
system. Use the “Open SerDes IBIS-AMI Manager” button in the Configuration block to
produce the IBIS files. In the Export tab of the SerDes IBIS-AMI Manager dialog box
choose a target directory and click the Export button to create the set of IBIS files.

1 SerDes Toolbox Topics

1-26

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

1-27

Create QCD Project

Click the SiSoft Link icon from the Apps tab in the MATLAB toolstrip to open the
SiSoft Link app.

If your SerDes system model is open in Simulink, it is listed in the Simulink Model
dropdown menu in the SiSoft Link app. Click the Refresh button if your model is not
listed. Set the QCD/QSI project dropdown menu to New QCD project (create) and
click Create QCD. If there are unresolved issues regarding the selected Simulink model,
Create QCD button remains disabled.

1 SerDes Toolbox Topics

1-28

Choose a folder in which the QCD project resides and a name for the project folder. The
folder path and project name must not have spaces. If you have not yet used SiSoft Link
to create a project, the system asks you to locate the folder containing your SiSoft
software. A report window appears and QCD opens executing a script produced by SiSoft
Link. When script execution finishes, the QCD project interface is renamed after your
SerDes system model, with a single sheet sheet1.

The following data are copied from Simulink to QCD:

• The QCD interface has the same name as the Simulink model.
• QCD has one sheet, sheet1.
• All IBIS files is copied into the QCD project si_lib/ibis folder.
• All Tx and Rx model parameter values from Simulink is set in the QCD solution space.

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

1-29

• Simulation parameters are set: UI, Samples_Per_Bit, and TargetBER.

Create QSI Project

To create a QSI project, set the QCD/QSI project dropdown menu to New QSI project
(create) and click the Create QSI button. The process is otherwise similar to that for
QCD. Typically, IBIS-AMI models are used in QSI for analysis of single-ended DDR4/5 DQS
signals with equalization. If that is the case, double click the Configuration block in the
Simuluink model to open it, and set Signaling to Single-ended before creating the QSI
project.

1 SerDes Toolbox Topics

1-30

For QSI the following simulation parameters are set:

• The QSI interface has the same name as the Simulink model.
• QSI has one sheet, sheet1.
• All IBIS files is copied into the QSI project si_lib/ibis folder.
• All Tx and Rx model parameter values from Simulink is set in the QSI solution space.
• Simulation parameters are set: UI, Samples_Per_Bit, and TargetBER.

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

1-31

• The Tx rise_time is copied from the typical corner value in the IBIS file.
• Time_Domain_Stop is set to Ignore_Bits + 20,000 UI.
• Record_Bits is set to 100 and Record_Start is set accordingly.

Import QCD or QSI Simulation Data into Simulink

After simulating in QCD or QSI, you can import data to reproduce a simulation in
Simulink. You must select the project in the QCD/QSI project dropdown menu. Click the
Browse... button to choose a desired QCD or QSI project if it is not listed in the QCD/QSI
project dropdown menu.

1 SerDes Toolbox Topics

1-32

The following data are copied from QCD/QSI to Simulink, as enabled by the Import
section checkboxes:

• All Tx and Rx model parameter values from the selected simulation are set in
corresponding blocks in the Simulink model.

• Modulation, SymbolTime, and SampleInterval are set in the Configuration block.
• The time domain stimulus pattern is set in the Stimulus block, even if only statistical

simulations are run in QCD/QSI.
• The channel impulse response from QCD/QSI is set in the Analog Channel block.

A report is generated giving the details of the import.

Update QCD or QSI with New Data from Simulink

To support iterative development, selectively update a QCD or QSI project with data from
Simulink. When a QCD or QSI project path is selected in QCD/QSI project dropdown
menu, the Create QCD (or Create QSI) button becomes Update QCD (or Update QSI).
The checkboxes above the button are enabled to choose the data to be updated. If
Update .ibs file is checked, the checkboxes for .ami files and .dll/.so files are forced on,
since importing the .ibis file in QCD or QSI always imports the other files along with it.

 SerDes Toolbox Interface for SiSoft Quantum Channel Designer and QSI Software

1-33

Clicking Update QCD (or Update QSI) runs the QCD (or QSI) to open the project and
makes the changes. To avoid conflicts, you must close the project before updating it.

See Also
Analog Channel | Configuration | SerDes Designer | Stimulus

More About
• “SiSoft Link” on page 1-23

1 SerDes Toolbox Topics

1-34

External Websites
• https://sisoft.com

 See Also

1-35

https://sisoft.com

Customize SerDes Systems

• “Customizing SerDes Toolbox Datapath Control Signals” on page 2-2
• “Find Zeros, Poles, and Gains for CTLE from Transfer Function” on page 2-13

2

Customizing SerDes Toolbox Datapath Control Signals
This example shows how to customize the control signals in a SerDes system datapath by
adding new custom AMI parameters and using MATLAB® function blocks. This allows
you to customize existing control parameters without modifying the built-in blocks in the
SerDes Toolbox™ library.

This example shows how to add a new AMI parameter to control the operation of the
three transmitter taps used by the FFE block. The custom AMI parameter simultaneously
sets all three taps to one of the ten values defined by the PCIe4 specification or allows you
to enter three custom floating-point tap values. To know more about how to define a
PCIe4 transmitter model, see “PCIe4 Transmitter/Receiver IBIS-AMI Model” on page 4-
2.

PCIe4 Transfer Model

The transmitter model in this example complies with the PCIe4 specification. The receiver
is a simple pass-through model. A PCIe4 compliant transmitter uses a 3-tap feed forward
equalizer (FFE) with one pre-tap and one post-tap, and ten presets.

Open the model adding_tx_ffe_params. The SerDes system Simulink® model consists
of Configuration, Stimulus, Tx, Analog Channel and Rx blocks.

open_system('adding_tx_ffe_params.slx')

• The Tx subsystem contains an FFE block to model the time-domain portion of the AMI
model and an Init block to model the statistical portion.

• The Analog Channel block has the PCIe4 parameter values for Target frequency,
Loss, Impedance and Tx/Rx analog model parameters.

• The Rx subsystem has a Pass-Through block and an Init block.

2 Customize SerDes Systems

2-2

Add New AMI Parameter

Add a new AMI parameter to the transmitter which is available to both the Init and
GetWave datapath blocks and functions. The parameter is also included in the Tx IBIS-
AMI file.

Double-click the Configuration block to open the Block Parameters dialog box. Click the
Open SerDes IBIS-AMI Manager button. Go to the AMI-Tx tab of the SerDeS IBIS-AMI
Manager dialog box.

• Select the FFE parameter, then click Add Parameter... to add a new FFE sub-
parameter.

• Set the Parameter name to ConfigSelect.
• Keep the Current value as 0.
• In the Description, add Pre/Main/Post tap configuration selector.
• Keep the Usage as In.
• Set the Type to Integer.
• Set the Format to List.
• Under the List Format details, set Default to 0.
• Set List values to [-1 0 1 2 3 4 5 6 7 8 9]
• Set List_Tip values to ["User Defined" "P0" "P1" "P2" "P3" "P4" "P5"

"P6" "P7" "P8" "P9"]

A new parameter ConfigSelect* is added to the AMI-Tx tab.

Modify Init

Modify the Initialize MATLAB function inside the Init block in the Tx subsystem to use the
newly added ConfigSelect*parameter. The ConfigSelect* parameter controls the
existing three transmitter taps. To accomplish this, add a switch statement that takes in
the values of ConfigSelect* and automatically sets the values for all three Tx taps,
ignoring the user defined values for each tap. If a ConfigSelect value of -1 is used, then
the user-defined Tx tap values are passed through to the FFE datapath block unchanged.

Inside the Tx subsystem, double-click the Init block to open the Block Parameters dialog
box and click the Refresh Init button to propagate the new AMI parameter to the
Initialize sub-system.

 Customizing SerDes Toolbox Datapath Control Signals

2-3

Type Ctrl-U to look under the mask for the Init block, then double-click on the initialize
block to open the Initialize Function.

Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB. This is an automatically generated function which provides the impulse
response processing of the SerDes system block (IBIS AMI-Init). The %% BEGIN: and %
END: lines denote the section where custom user code can be entered. Data in this
section will not get over-written when Refresh Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
FFEParameter.ConfigSelect; % User added AMI parameter
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To add the custom ConfigSelect control code, scroll down the Customer user code area,
comment out the FFEParameter.ConfigSelect line, then enter the following code:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
%FFEParameter.ConfigSelect; % User added AMI parameter
switch FFEParameter.ConfigSelect
case -1 % User defined tap weights
FFEInit.TapWeights = FFEParameter.TapWeights;

2 Customize SerDes Systems

2-4

case 0 % PCIe Configuration: P0
FFEInit.TapWeights = [0.000 0.750 -0.250];
case 1 % PCIe Configuration: P1
FFEInit.TapWeights = [0.000 0.830 -0.167];
case 2 % PCIe Configuration: P2
FFEInit.TapWeights = [0.000 0.800 -0.200];
case 3 % PCIe Configuration: P3
FFEInit.TapWeights = [0.000 0.875 -0.125];
case 4 % PCIe Configuration: P4
FFEInit.TapWeights = [0.000 1.000 0.000];
case 5 % PCIe Configuration: P5
FFEInit.TapWeights = [-0.100 0.900 0.000];
case 6 % PCIe Configuration: P6
FFEInit.TapWeights = [-0.125 0.875 0.000];
case 7 % PCIe Configuration: P7
FFEInit.TapWeights = [-0.100 0.700 -0.200];
case 8 % PCIe Configuration: P8
FFEInit.TapWeights = [-0.125 0.750 -0.125];
case 9 % PCIe Configuration: P9
FFEInit.TapWeights = [-0.166 0.834 0.000];
otherwise
FFEInit.TapWeights = FFEParameter.TapWeights;
end
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-
AMI Manager dialog box from the Configuration block. In the AMI-Tx tab, edit the
ConfigSelect* parameter to set Current value to P7. This corresponds to PCIe
Configuration P7: Pre = -0.100, Main = 0.700 and Post = -0.200.

Run the simulation and observe the results of Init statistical analysis.

 Customizing SerDes Toolbox Datapath Control Signals

2-5

Next, set the Current value of the ConfigSelect* parameter to User Defined. This
corresponds to user-defined tap weights: Pre = 0.000, Main = 1.000 and Post = 0.000.

Run the simulation and observe the results of Init statistical analysis.

2 Customize SerDes Systems

2-6

Try different values of ConfigSelect* to verify proper operation. The statistical eye opens
and closes based on the amount of equalization applied by the FFE. How much the eye
changes, and the tap values that create the most open eye varies based on the loss
defined in the Analog Channel block.

 Customizing SerDes Toolbox Datapath Control Signals

2-7

Modify GetWave

To modify GetWave, add a new MATLAB function that operates in the same manner as the
Initialize function.

Inside the Tx subsystem, type Ctrl-U to look under the mask of the FFE block.

• Add a Constant block to the canvas from the Simulink/Sources library.
• Rename the Constant block as FFEConfigSelect and set the Constant value to

FFEParameter.ConfigSelect.
• Add a MATLAB Function block to the canvas from the Simulink/User-Defined library.
• Rename the MATLAB Function block to PCIe4FFEconfig.
• Double-click the MATLAB Function block and replace the template code with the

following:

% PCIe4 tap configuration selector
% Selects pre-defined Tx FFE tap weights based on PCIe4 specified
% configurations.
%
% Inputs:
% TapWeightsIn: User defined floating point tap weight values.
% ConfigSelect: 0-9: PCIe4 defined configuration (P0-P9).
% -1: User defined configuration (from TapWeightsIn).
% Outputs:
% TapWeightsOut: Array of tap weights to be used.
%
function TapWeightsOut = PCIe4FFEconfig(TapWeightsIn, ConfigSelect)

switch ConfigSelect
 case -1 % User defined tap weights

2 Customize SerDes Systems

2-8

 TapWeightsOut = TapWeightsIn;
 case 0 % PCIe Configuration: P0
 TapWeightsOut = [0.000 0.750 -0.250];
 case 1 % PCIe Configuration: P1
 TapWeightsOut = [0.000 0.833 -0.167];
 case 2 % PCIe Configuration: P2
 TapWeightsOut = [0.000 0.800 -0.200];
 case 3 % PCIe Configuration: P3
 TapWeightsOut = [0.000 0.875 -0.125];
 case 4 % PCIe Configuration: P4
 TapWeightsOut = [0.000 1.000 0.000];
 case 5 % PCIe Configuration: P5
 TapWeightsOut = [-0.100 0.900 0.000];
 case 6 % PCIe Configuration: P6
 TapWeightsOut = [-0.125 0.875 0.000];
 case 7 % PCIe Configuration: P7
 TapWeightsOut = [-0.100 0.700 -0.200];
 case 8 % PCIe Configuration: P8
 TapWeightsOut = [-0.125 0.750 -0.125];
 case 9 % PCIe Configuration: P9
 TapWeightsOut = [-0.166 0.834 0.000];
 otherwise
 TapWeightsOut = TapWeightsIn;
end

Re-wire the FFE sub-system so that the FFETapWeights and FFEConfigSelect constant
blocks connect to the inputs of the newly defined PCIe4FFEconfig MATLAB function
block. The TapWeightsOut signal from the PCIe4FFEconfig block connects to the
TapWeights port of the FFE block.

To test that the new FFE control parameter is working correctly, open the SerDes IBIS-
AMI Manager dialog box from the Configuration block. In the AMI-Tx tab, edit the

 Customizing SerDes Toolbox Datapath Control Signals

2-9

ConfigSelect* parameter to set Current value to P7. This corresponds to PCIe
Configuration P7: Pre = -0.100, Main = 0.700 and Post = -0.200. Observe the output
waveform.

Next, set the Current value of the ConfigSelect* parameter to User Defined. This
corresponds to user-defined tap weights: Pre = 0.000, Main = 1.000 and Post = 0.000.
Observe how the output waveform changes.

2 Customize SerDes Systems

2-10

Try different values of ConfigSelect* to verify proper operation. The time-domain eye
opens and closes based on the amount of equalization applied by the FFE. How much the
eye changes, and the tap values that create the most open eye varies based on the loss
defined in the Analog Channel block.

Export the Tx IBIS-AMI Model

Verify that both Init and GetWave are behaving as expected, then generate the final IBIS-
AMI compliant PCIe4 model executables, IBIS and AMI files.

Double-click the Configuration block to open the Block Parameters dialog box. Click the
Open SerDes IBIS-AMI Manager button, then select the Export tab:

• Update the Tx model name to pcie4_tx.
• Tx and Rx corner percentage is set to 10. This will scale the min/max analog model

corner values by +/-10%.

 Customizing SerDes Toolbox Datapath Control Signals

2-11

• Verify that Dual model is selected as Model Type for the Tx. This will create model
executables that support both statistical (Init) and time domain (GetWave) analysis.

• Set the Tx model Bits to ignore parameter to 3 since there are three taps in the Tx
FFE.

• Set the Models to export to Tx only.
• Set the IBIS file name (.ibs) to pcie4_tx_serdes.ibs
• Click the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Model

The PCIe4 transmitter IBIS-AMI model is now complete and ready to be tested in any
industry standard AMI model simulator.

References

PCI-SIG.

2 Customize SerDes Systems

2-12

https://pcisig.com

Find Zeros, Poles, and Gains for CTLE from Transfer
Function

This example shows how to get a set of zeros, poles and gains from a transfer function
and use these to configure the Specification parameter GPZ Matrix of a CTLE in the
SerDes Designer app. You can convert the poles and residues output by the
rationalfit function into a set of zeros, poles, and gains. You can then reformat the set
of zeros, poles, and gains to use as a GPZ matrix in a CTLE block.

Import Transfer Function

Import a .csv file containing a transfer function using the function readmatrix.

ctle_transfunc = readmatrix('transfer_function.csv','Range','A7:C775');
freq = ctle_transfunc(:,1);
ri = ctle_transfunc(:,2:end);

Convert Transfer Function to Complex Form

To prepare data for use by rationalfit, convert the real numbers from the transfer
function to complex numbers using complex function.

data = complex(ri(:,1:2:end),ri(:,2:2:end));

Find Rational Fit of Transfer Function

Set the number of poles to 8 for use by rationalfit. Then use a loop function to model
the complex transfer function using rationalfit. Plot data to evaluate the results from
rationalfit.

npoles = 8;
fit = rfmodel.rational;
errdb = zeros(size(npoles));

%find rational fit
[fit(npoles),errdb(npoles)] = rationalfit(freq,data(:,1),'NPoles',npoles,'IterationLimit',100);

%calculate the frequency-response of array "fit" using array "freq"
resp(:,npoles) = freqresp(fit(npoles),freq);
figure

%plot each point of array "data" and each value of array "resp" to compare:
plot(freq,abs(data(:,1)),'-o',freq,abs(resp(:,npoles)))

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

2-13

https://localhost:31521/toolbox/matlab/codetools/liveeditor/doc_id:serdes_ref#mw_eeeac296-d84c-4e3d-b6aa-27db8cc30967

%title(sprintf('npoles %d errdb %g',npoles,errdb(npoles)))
[besterrdb,bestindex] = min(errdb);
bestfit = fit(bestindex);
bestresp = resp(:,bestindex);

dt = 1/(16*freq(end));
T = (0:499)*dt;

Convert to Zeros, Poles, Gains from Poles and Residues

rationalfit returns poles and residues, but you need to convert these into zeros, poles
and gains. The CTLE can be configured to use Specification parameter "GPZ Matrix"
where the units for gains, poles and zeros are dB, Hz, and Hz, respectively.

2 Customize SerDes Systems

2-14

gpz = zeros(1,2*max(npoles));
[g1, p, z, gs] = GPZFromRationalFit(bestfit(1));
gpz(1,1) = g1;
gpz(1,2:2:length(p)*2) = p;
gpz(1,3:2:length(z)*2+1) = z;

Configure CTLE Block in SerDes Designer

Launch serdesDesigner. Place a CTLE at the RX. Set the CTLE to use GPZ Matrix
from the Specification parameter in the Block Parameters tab for CTLE. Then copy the
contents of gpz above and paste into the entry for Gain pole zero matrix.

serdesDesigner;

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

2-15

2 Customize SerDes Systems

2-16

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

2-17

Corellate Pulse Response in SerDes Designer to IBIS-AMI Simulation

Within the serdesDesigner App, plot the Pulse Response. Then Export->Make IBIS AMI
Model for SerDes System. The IBIS-AMI model may be loaded into an appropriate EDA
tool to plot the Pulse Response from the model. Plots for Pulse Response from the App
and the EDA tool may be compared for corellation purposes.

2 Customize SerDes Systems

2-18

 Find Zeros, Poles, and Gains for CTLE from Transfer Function

2-19

Customize IBIS-AMI Models

3

Managing AMI Parameters
This example shows how to add, delete, modify, rename and hide AMI parameters in
SerDes Toolbox. These parameters are then available to be used with the existing
datapath blocks, user created MATLAB function blocks or optimization control loop.
These parameters can be passed to or returned from the AMI model executables (DLLs)
created by SerDes Toolbox.

Example Setup

This example will be adding a new InOut Parameter 'Count' alongside the Pass-through
datapath block. This parameter will count the number of passes through AMI_Init (which
should be 1), then pass the result to AMI_GetWave where it will continue to count the
total number of passes. While this may not be especially useful functionality for AMI
model development, it will serve to demonstrate how new AMI parameters are added and
used during model generation.

Inspect the Model

This example starts with a simple receiver model that only uses a pass-through block.

open_system('serdes_add_param.slx')

This Simulink SerDes System consists of Configuration, Stimulus, Tx, Analog Channel and
Rx blocks.

• The Tx subsystem has the FFE datapath block to model the time domain portion of the
AMI model and an Init block to model the statistical portion. The Tx subsystem will not
be used in this example.

• The Analog Channel block has the parameter values for Target frequency, Loss,
Impedance and Tx/Rx analog model parameters.

3 Customize IBIS-AMI Models

3-2

• The Rx subsystem has the Pass-Through datapath block and an Init block to model the
statistical portion of the AMI model.

Run the Model

Run the model to verify that the base configuration is working as expected before editing.
Two plots are generated. The first is a live time domain (GetWave) eye diagram that is
updated as the model is running.

The second plot contains four views of the statistical (Init) results.

 Managing AMI Parameters

3-3

How to Add a new Parameter

Open the Block Parameter dialog box for the Configuration block, then click on the Open
SerDes IBIS-AMI Manager button and select the AMI-Rx tab.

1. Highlight the PT datapath block and press Add Parameter...

2. Change the Parameter Name to: Count

3 Customize IBIS-AMI Models

3-4

3. Verify that the Current value is set to 0 (this will be the starting point for our count).

4. In the Description, type: Starting value of iteration count.

There are four possible values for Usage:

• In: These parameters are required inputs to the AMI Executable.
• Out: These parameters are output from the AMI_Init and/or AMI_GetWave functions

and returned to the EDA tool.
• InOut: These parameters are required inputs to the AMI Executable and can also

return values from AMI_Init and/or AMI_GetWave to the EDA tool.
• Info: These parameters are information for the User and/or the simulation tool and

are not used by the model.

5. Set the Usage to: InOut

There are six possible parameter Types:

• Float: A floating point number.
• Integer: Integer numbers without a fractional or decimal component.
• UI: Unit Interval (the inverse of the data rate frequency).
• Tap: A floating point number for use by Tx FFE and Rx DFE delay lines.
• Boolean: True and False values, without quotation marks.
• String: A sequence of ASCII characters enclosed in quotation marks.

6. Set the Type to: Integer

There are three possible parameter Formats:

• Value: A single data value.
• List: A discrete set of values from which the user may select one value.
• Range: A continuous range for which the user may select any value between Min and

Max.

7. Set the Format to: Value

8. Hit OK to create the new parameter, then close the SerDes IBIS-AMI Manager.

 Managing AMI Parameters

3-5

Accessing a new Parameter from the Initialize Function

New parameters are accessed from the Initialize function (for statistical analysis) through
the impulseEqualization MATLAB function block. This example has added an InOut
parameter. To use the new InOut Parameter 'Count' in AMI_Init:

1. Inside the Rx subsystem, double click on the Init block to open the mask.

2. Press the Refresh Init button to propagate the new AMI parameter(s) to the initialize
subsystem.

3. Click OK to close the mask.

4. Click on the Init block again and type Ctrl-U to look under the Init mask, then double-
click on the initialize block to open the Initialize Function.

The impulseEqualization MATLAB function block is an automatically generated function
which provides the impulse response processing of the SerDes system block (IBIS-AMI
Init).

Note that the new Count parameter has been automatically added as an output of this
MATLAB function as a Data Store Write block. No Data Store Read is required because
the input parameters are passed in as a PTSignal Simulink.Parameter.

5. Double-click on the impulseEqualization MATLAB function block to open the
function in MATLAB. The '%% BEGIN:' and '% END:' lines within this function block

3 Customize IBIS-AMI Models

3-6

denote the section where custom user code can be entered. Data in this section will not
get over-written when Refresh Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

When Refresh Init was run, it added our new parameter to the Custom user code area so
that it can be used as needed:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
PTCount = PTParameter.Count; % User added AMI parameter from SerDes IBIS-AMI Manager
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

6. To add our custom code, scroll down to the Custom user code section, then enter
PTCount = PTCount + 1; The Custom user code section should look like this:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
PTCount = PTParameter.Count; % User added AMI parameter from SerDes IBIS-AMI Manager
PTCount = PTCount + 1; % Count each iteration through this function.
% END: Custom user code area (retained when 'Refresh Init' button is pressed)

7. Save the updated MATLAB function, then run the Simulink project to test the new
code. Using the Simulation Data Inspector, verify that the value of Count after Init is now
'1'.

Note that the final value for Count was written to the PTSignal data store so that it is now
available in AMI_GetWave.

How Usage affects Parameters in Init

Depending on what Usage was selected, parameters show up in the Custom User code
area of the impulseEqualization MATLAB function block in different ways:

Info Parameters

Info parameters are informational for the user or simulation tool and are not passed to, or
used by the model, therefore they will not show up in the Initialize code.

In Parameters

In parameters are Simulink.Parameter objects that show up as a constant that can be
used as needed. For example, an In parameter named 'InParam' that was added to the
VGA block would show up as follows:

 Managing AMI Parameters

3-7

VGAParameter.InParam; % User added AMI parameter from SerDes IBIS-AMI Manager

Out Parameters

Out parameters are Simulink.Signal objects that show up as a parameter with the initial
value defined in the IBIS-AMI Manager. For example, an Out parameter named
'OutParam' that was added to the VGA block with a current value of '2' would show up as
follows:

VGAOutParam=2; % User added AMI parameter from SerDes IBIS-AMI Manager

Output parameters use a Data Store Write block to store values for passing out of Init to
the EDA tool (via the AMI_Parameters_Out string) and for use in GetWave (if desired). In
the above example, a Data Store Write block named 'OutParam' was automatically added
to the Initialize Function:

InOut Parameters

InOut parameters use both a Simulink.Parameter object and a Simulink.Signal object. For
example, an InOut parameter named 'InOutParam' that was added to the VGA block
would show up as follows:

VGAInOutParam = VGAParameter.InOutParam; % User added AMI parameter from SerDes IBIS-AMI Manager

The Input value is accessed by using the Simulink.Parameter reference
VGAParameter.InOutParam, while the output value uses a Data Store Write block to store
values. In the above example, a Data Store Write block named 'InOutParam' was
automatically added to the Initialize Function for passing values out of Init to the EDA
tool (via the AMI_Parameters_Out string) and for use in GetWave (if desired):

3 Customize IBIS-AMI Models

3-8

Accessing a new Parameter from the GetWave Function

New parameters are accessed from the GetWave function (for time-domain analysis) by
adding a Constant, Data Store Read or Data Store Write block to a datapath block. This
example has added an InOut parameter. To use the new InOut Parameter 'Count' in
GetWave:

1. Inside the Rx subsystem, click on the Pass-Through datapath block and type Ctrl-U to
look under the Pass-Through mask.

2. Add a Simulink/Signal Routing Data Store Read block to the canvas

• Name the Data Store Read block: PTCount_Read
• Double-click on the Data Store Read block and change the Data store name to:

PTSignal
• On the Element Selection tab, in the Specify element(s) to select box type:

PTSignal.Count and press the Select>> button to select the Count element.
• Resize the block to make all names and element properties visible.
• Click OK to close the dialog.

3. Add a Simulink/Math Operations Sum block to the canvas.

4. Add a Simulink/Sources Constant block to the canvas and set the value to 1.

5. Add a Simulink/Signal Routing Data Store Write block to the canvas.

• Name the Data Store Write block: PTCount_Write
• Double-click on the Data Store Write block and change the Data store name to:

PTSignal

 Managing AMI Parameters

3-9

• On the Element Assignment tab, in the Specify element(s) to select box type:
PTSignal.Count and press the Select>> button to select the Count element.

• Resize the block to make all names and element properties visible.
• Click OK to close the dialog.

6. Wire up each of the elements so that the Pass Through block now looks like the
following:

7. Save, then run the Simulink project to test the new code.

By adding Value Labels to the output port of the Sum block, see that the value of Count
after GetWave is 3.2e+04 (Samples Per Symbol * Number of symbols). After generating
AMI model executables, the value of Count will be available in the Parameters out string
in an AMI simulator.

How Usage affects Parameters in GetWave

New parameters are accessed from the GetWave function in different ways, depending on
what Usage was selected.

3 Customize IBIS-AMI Models

3-10

Info Parameters

Info parameters are informational for the user or simulation tool and cannot be used by
the model.

In Parameters

In parameters are Simulink.Parameter objects that are used by adding a Constant block.
For example, an In parameter named 'InParam' that was added to the Rx VGA block can
be accessed by any of the Rx blocks by adding a Constant block like this:

For more information, see “Customizing SerDes Toolbox Datapath Control Signals” on
page 2-2.

Out Parameters

Out parameters are Simulink.Signal objects that use a Data Store Write block to store
values for passing out of GetWave to the EDA tool (via the AMI_Parameters_Out string) or
to other Rx blocks. For example, an Out parameter named 'OutParam' that was added to
the Rx VGA block can be written to with a Data Store Write block like this:

InOut Parameters

InOut parameters use both a Simulink.Parameter object and a Simulink.Signal object. The
Input value can be accessed with either a constant block or with a Data Store Read block,
while the output value uses a Data Store Write block to store values for passing out of
GetWave to the EDA tool (via the AMI_Parameters_Out string) or to other Rx blocks. For

 Managing AMI Parameters

3-11

example, if an InOut parameter named 'InOutParam' is added to the Rx VGA block, the
initial Input value can be accessed by any Rx block by adding a Constant block like this:

Alternately, the updated Input value can be accessed with a Data Store Read block like
this:

The output value can be written to with a Data Store Write block like this:

How to Rename a Parameter

The parameters used by the SerDes Toolbox built-in System Objects can be modified or
hidden but cannot be renamed.

User generated AMI parameters are renamed as follows.

Update the AMI Parameters

1. Open the Block Parameter dialog box for the Configuration block, then click on the
Open SerDes IBIS-AMI Manager button.

2. Go to either the AMI-Tx or AMI-Rx tab where the parameter resides.

3 Customize IBIS-AMI Models

3-12

3. Highlight the parameter to be renamed and press Edit...

4. In the Parameter name field, changed the name as desired.

5. Hit OK, then Close the SerDes IBIS-AMI Manager

Update Init

1. Push into either the Tx or Rx subsystem block where the parameter is used.

2. Double click on the Init block to open the mask.

3. Press the Refresh Init button to propagate the AMI parameter name change to the
initialize subsystem.

4. Click OK to close the mask.

5. Click on the Init block again and type Ctrl-U to look under the Init mask, then double-
click on the initialize block to open the Initialize Function.

6. Double-click on the impulseEqualization MATLAB function block to open the
function in MATLAB.

7. Scroll down to the section titled:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

8. Rename all instances of the parameter.

9. Save and close the MATLAB function block.

Update GetWave

Push into each datapath block where the renamed parameter was used and rename each
instance of the parameter.

Verify Results

Run a simulation to verify that the project still operates with no errors or warnings.

How to Delete a Parameter

The parameters used by the SerDes Toolbox built-in System Objects can be modified or
hidden but cannot be deleted.

 Managing AMI Parameters

3-13

User generated AMI parameters are deleted as follows.

Update the AMI Parameters

1. Open the Block Parameter dialog box for the Configuration block, then click on the
Open SerDes IBIS-AMI Manager button.

2. Go to either the AMI-Tx or AMI-Rx tab where the parameter resides.

3. Highlight the parameter to be deleted and press Delete Parameter.

4. Confirm the deletion, then Close the SerDes IBIS-AMI Manager.

Update Init

1. Push into either the Tx or Rx subsystem block where the parameter was used.

2. Double click on the Init block to open the mask.

3. Press the Refresh Init button to remove any deleted Out or InOut parameter Data
Stores from the initialize subsystem.

4. Click OK to close the mask.

5. Click on the Init block again and type Ctrl-U to look under the Init mask

6. Double-click on the initialize block to open the Initialize Function.

7. Double-click on the impulseEqualization MATLAB function block to open the
function in MATLAB.

8. Scroll down to the section titled:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)

9. Delete or comment out all instances of the removed parameter.

10. Save and close the MATLAB function block.

Update GetWave

Push into each datapath block where the removed parameter was used and delete each
instance of the parameter.

3 Customize IBIS-AMI Models

3-14

Verify Results

Run a simulation to verify that the project still operates with no errors or warnings.

How to Hide a Parameter

There may be times when a parameter is required for model functionality, but needs to be
hidden from the user. For example, to keep a user from changing the FFE mode, remove
this parameter from .ami file - effectively hardcoding the parameter to a single value. The
mode parameter is still present in the code so that the FFE continues to work as
expected, but the user can no longer change the value.

To hide a parameter from both Init and GetWave:

1. Open the mask by double-clicking on the datapath block of interest.

2. Expand the IBIS-AMI parameters to show the list of parameters to be included in the
IBIS-AMI model.

3. Deselect the parameter(s) to be hidden.

A few things to keep in mind about hiding parameters:

• When hiding parameters, verify that the current parameter value(s) are correct. The
current value will now always be used as the default value for that parameter.

• Hiding a parameter has no effect on the model executable. It only removes the
parameter from the generated .ami file.

• If the hidden parameter is of type Out or InOut, it will still show up in the
AMI_Parameters_Out string of the model executable.

How to Modify a Parameter

All the parameters used in SerDes Toolbox are modified via the SerDes IBIS-AMI
Manager dialog by using the Edit... button. However, the parameter values that can be
modified vary depending on which type of parameters they are.

For the built-in System Objects, only the following fields can be modified:

• Current Value
• Description
• Format

 Managing AMI Parameters

3-15

• Default
• List values (for Format List)
• Typ/Min/Max values (for Format Range)

For the user defined parameters all fields can be modified.

How to add Jitter Parameters

Jitter and noise parameters such as Tx_Rj, Tx_Dj, Tx_DCD, Rx_Rj, Rx_Dj and Rx_DCD or
other reserved parameters such Rx_Receiver_Sensitivity are post-processing parameters
that are used by an IBIS-AMI compliant simulator to modify the simulation results
accordingly. These parameters are added via the SerDes IBIS-AMI Manager dialog by
using the Jitter & Noise... button.

For example, to add Rx_Receiver_Sensitivity and Rx_Dj to a receiver .ami file, click the
Jitter & Noise... button to bring up the Rx Jitter&Noise dialog, select the
Rx_Receiver_Sensitivity and Rx_Dj boxes, then click OK to add these parameters to the
Reserved Parameters section of the Rx AMI file.

To set the values for these two new parameters:

• Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit
AMI Parameter dialog.

• Set the Current Value to 0.04
• Change the Format to Value.
• Click OK to save the changes.
• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter

dialog.
• Set the Current Value to 0.0
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.05
• Set the Min value to 0.0
• Set the Max value to 0.1
• Click OK to save the changes.

These two parameters will show up in the Reserved_Parameters section of the .ami file
like this:

3 Customize IBIS-AMI Models

3-16

(Rx_Receiver_Sensitivity (Usage Info)(Type Float)(Value 0.04))

(Rx_Dj (Usage Info) (Type UI) (Range 0.05 0.0 0.01))

For more information on IBIS reserved parameters see the IBIS specification.

References

IBIS 6.1 Specification

 Managing AMI Parameters

3-17

https://ibis.org/ver6.1/ver6_1.pdf

Industry Standard IBIS-AMI Models

• “PCIe4 Transmitter/Receiver IBIS-AMI Model” on page 4-2
• “DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model” on page 4-17
• “DDR5 Controller Transmitter/Receiver IBIS-AMI Model” on page 4-29
• “CEI-56G-LR Transmitter/Receiver IBIS-AMI Model” on page 4-42
• “USB3.1 Transmitter/Receiver IBIS-AMI Model” on page 4-52
• “Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training”

on page 4-63

4

PCIe4 Transmitter/Receiver IBIS-AMI Model
This example shows how to create generic PCIe Generation 4 (PCIe4) transmitter and
receiver IBIS-AMI models using the library blocks in SerDes Toolbox™. The generated
models conform to the IBIS-AMI and PCI-SIG PCIe4 specifications.

PCIe4 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model
architecture using the blocks required for PCIe4 in the SerDes Designer app. The model
is then exported to Simulink® for further customization.

This example uses the SerDes Designer model pcie4_txrx_ami. Type the following
command in the MATLAB® command window to open the model:

>> serdesDesigner('pcie4_txrx_ami')

A PCIe4 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with one pre-tap
and one post-tap, and ten presets. The receiver model uses a continuous time linear
equalizer (CTLE) with seven pre-defined settings, and a 2-tap decision feedback equalizer
(DFE). To support this configuration the SerDes System is set up as follows:

Configuration Setup

• Symbol Time is set to 62.5 ps, since the maximum allowable PCIe4 operating
frequency is 16 GHz

• Target BER is set to 1e-12.
• Samples per Symbol, Modulation, and Signaling are kept at default values, which

are respectively 16, NRZ (non-return to zero), and Differential.

4 Industry Standard IBIS-AMI Models

4-2

Transmitter Model Setup

• The Tx FFE block is set up for one pre-tap and one post-tap by including three tap
weights. Specific tap presets will be added in later in the example when the model is
exported to Simulink.

• The Tx AnalogOut model is set up so that Voltage is 1.05 V, Rise time is 12 ps, R
(output resistance) is 50 Ohms, and C (capacitance) is 0.25 pF according to the PCIe4
specification.

Channel Model Setup

• Channel loss is set to 23 dB according to the PCIe4 specification 16.0 GT/s root port
long calibration channel insertion loss limit.

• Target Frequency is set to the Nyquist frequency, 8 GHz.
• Differential impedance is kept at default 100 Ohms.

Receiver Model Setup

• The Rx Analogin model is set up so that R (input resistance) is 50 Ohms and C
(capacitance) is 0.25 pF according to the PCIe4 specification.

• The Rx CTLE block is set up for 7 configurations. The GPZ (Gain Pole Zero) matrix
data is derived from the transfer function given in the PCIe4 Behavioral CTLE
specification.

• The Rx DFE/CDR block is set up for two DFE taps. The limits for each tap have been
individually defined according to the PCIe4 specification to +/-30 mV for tap1 and
+/-20 mV for tap2.

Plot Statistical Results

Use the SerDes Designer plots to visualize the results of the PCIe4 setup.

Add the BER plot from ADD Plots and observe the results.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

4-3

Change the Rx CTLE Configuration select parameter value from 0 to 4 and observe how
this changes the data eye.

4 Industry Standard IBIS-AMI Models

4-4

Change the value of the Tx FFE Tap weights from [0 1 0] to [-0.1 1 -0.1] and
observe the results.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

4-5

Change the Rx CTLE Mode to Adapt and observe the results. In this mode all CTLE
values are swept to find the optimal setting.

4 Industry Standard IBIS-AMI Models

4-6

Before continuing, reset the value of the Tx FFE TapWeights back to [0 1 0] and Rx
CTLE ConfigSelect back to 0. Leave the Rx CTLE Mode at Adapt. Resetting these
values here will avoid the need to set them again after the model has been exported to
Simulink. These values will become the defaults when the final AMI models are
generated.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further
customization and generation of the AMI model executables.

PCIe4 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes
Designer app and customize it as required for PCIe4 in Simulink.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

4-7

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx,
Analog Channel and Rx blocks. All the settings from the SerDes Designer app have been
transferred to the Simulink model. Save the model and review each block setup.

• Double click the Configuration block to open the Block Parameters dialog box. The
parameter values for Symbol time, Samples per symbol, Target BER, Modulation
and Signaling is carried over from the SerDes Designer app.

• Double click the Stimulus block to open the Block Parameters dialog box. You can set
the PRBS (pseudorandom binary sequence) order and the number of symbols to
simulate. This block is not carried over from the SerDes Designer app.

• Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE
block carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

• Double click the Analog Channel block to open the Block Parameters dialog box. The
parameter values for Target frequency, Loss, Impedance and Tx/Rx analog model
parameters is carried over from the SerDes Designer app.

• Double click on the Rx block to look inside the Rx subsystem. The subsystem has the
CTLE and DFECDR blocks carried over from the SerDes Designer app. An Init block is
also introduced to model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time-domain (GetWave) eye diagram that is
updated as the model is running.

4 Industry Standard IBIS-AMI Models

4-8

The second plot contains four views of the statistical (Init) results, similar to what is
available in the SerDes Designer App.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

4-9

Update Tx FFE Block

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters
dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in
the IBIS-AMI model.

4 Industry Standard IBIS-AMI Models

4-10

• Deselect the Mode parameter to remove this parameter from the AMI file, effectively
hard-coding the current value of Mode in final AMI model to Fixed.

Review Rx CTLE Block

• Inside the Rx subsystem, double click the CTLE block to open the CTLE Block
Parameters dialog box.

• Gain pole zero data is carried over from the SerDes Designer app. This data is
derived from the transfer function given in the PCIE4 Behavioral CTLE specification.

• CTLE Mode is set to Fixed, which means an optimization algorithm built into the
CTLE system object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block
Parameters dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in
the IBIS-AMI model.

• Clear the Phase offset and Reference offset parameters to remove these parameters
from the AMI file, effectively hard-coding these parameters to their current values.

Generate PCIe4 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI
parameters for PCIe4, then generates IBIS-AMI compliant PCIe4 model executables, IBIS
and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open
SerDes IBIS/AMI Manager button. In the IBIS tab inside the SerDes IBIS/AMI manager
dialog box, the analog model values are converted to standard IBIS parameters that can
be used by any industry standard simulator. In the AMI-Rx tab in the SerDes IBIS/AMI
manager dialog box, the reserved parameters are listed first followed by the model
specific parameters following the format of a typical AMI file.

Update Transmitter AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS/AMI manager dialog box. Following the format of
a typical AMI file, the reserved parameters are listed first followed by the model specific
parameters.

Inside the Model_Specific parameters, you can set the TX FFE tap values in three
different ways:

 PCIe4 Transmitter/Receiver IBIS-AMI Model

4-11

• Leave the Tx FFE tap values at their default configuration and you can enter any
floating point value for the pre/main/post taps values.

• Create a new AMI parameter to automatically select preset values - see “Managing
AMI Parameters” on page 3-2.

• Directly specify the ten preset coefficients as defined in the PCIe4 specification -
shown below in this example.

When you directly specify the preset coefficients, you change the format of the three
TapWeights and specify the exact value to use for each preset. Only these ten defined
presets will be allowed, and all three taps must be set to the same preset to get the
correct values.

Set Preshoot Tap

• Select TapWeight -1, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

• Set the Current Value to 0.000.
• Change the Description to Preshoot tap value.
• Change the Format from Range to List.
• Change the Default value to 0.000.
• In the List values box enter: [0.000 0.000 0.000 0.000 0.000 -0.100

-0.125 -0.100 -0.125 -0.166].
• In the List_Tip values box enter: ["P0" "P1" "P2" "P3" "P4" "P5" "P6" "P7"

"P8" "P9"].
• Click OK to save the changes.

Set Main Tap

• Select TapWeight 0, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

• Set the Current Value to 0.750.
• Change the Description to Main tap value.
• Change the Format from Range to List.
• Change the Default value to 0.750.
• In the List values box enter: [0.750 0.833 0.800 0.875 1.000 0.900 0.875

0.700 0.750 0.834].

4 Industry Standard IBIS-AMI Models

4-12

• In the List_Tip values box enter: ["P0" "P1" "P2" "P3" "P4" "P5" "P6"
"P7" "P8" "P9"].

• Click OK to save the changes.

Set De-emphasis Tap

• Select TapWeight 1, then click the Edit... button to bring up the Add/Edit AMI
Parameter dialog.

• Set the Current Value to -0.250.
• Change the Description to: De-Emphasis tap value.
• Change the Format from Range to List.
• Change the Default value to -0.250.
• In the List values box enter: [-0.250 -0.167 -0.200 -0.125 0.000 0.000

0.000 -0.200 -0.125 0.000].
• In the List_Tip values box enter: ["P0" "P1" "P2" "P3" "P4" "P5" "P6" "P7"

"P8" "P9"].
• Click OK to save the changes.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model click the Jitter & Noise... button to bring up
the Tx Jitter&Noise dialog, select the Tx_DCD, Tx_Dj and Tx_Rj boxes and click OK to
add these parameters to the Reserved Parameters section of the Tx AMI file. The
following ranges allow you to fine-tune the jitter values to meet PCIe4 jitter mask
requirements.

Set Tx DCD Jitter Value

• Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 3.0e-11
• Click OK to save the changes.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

4-13

Set Tx Dj Jitter Value

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 3.0e-11
• Click OK to save the changes.

Set Tx Rj Jitter Value

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 2.0e-12
• Click OK to save the changes.

Update Receiver AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS/AMI manager dialog box. Following the format
of a typical AMI file, the reserved parameters are listed first followed by the model
specific parameters.

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Jitter & Noise... button to bring up
the Rx Jitter&Noise dialog, select the Rx_DCD, Rx_Dj and Rx_Rj boxes and click OK to
add these parameters to the Reserved Parameters section of the Rx AMI file. The
following ranges allow you to fine-tune the jitter values to meet PCIe4 jitter mask
requirements.

4 Industry Standard IBIS-AMI Models

4-14

Set Rx DCD Jitter Value

• Select Rx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 3.0e-11
• Click OK to save the changes.

Set Rx Dj Jitter Value

• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 3.0e-11
• Click OK to save the changes.

Set Rx Rj Jitter Value

• Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 1.0e-12
• Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS/AMI manager dialog box.

 PCIe4 Transmitter/Receiver IBIS-AMI Model

4-15

• Update the Tx model name to pcie4_tx.
• Update the Rx model name to pcie4_rx.
• Note that the Tx and Rx corner percentage is set to 10. This will scale the min/max

analog model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings.

This will create model executables that support both statistical (Init) and time domain
(GetWave) analysis.

• Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 20,000 to allow sufficient time for the Rx

DFE taps to settle during time domain simulations.
• Set Models to export as Both Tx and Rx so that all the files are selected to be

generated (IBIS file, AMI files and DLL files).
• Set the IBIS file name to be pcie4_serdes.
• Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The PCIe4 transmitter and receiver IBIS-AMI models are now complete and ready to be
tested in any industry standard AMI model simulator.

References

1 PCI-SIG, https://pcisig.com.

4 Industry Standard IBIS-AMI Models

4-16

https://pcisig.com/

DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model
This example shows how to create generic DDR5 transmitter and receiver IBIS-AMI
models using the library blocks in SerDes Toolbox™. Since DDR5 DQ signals are
bidirectional, this example creates Tx and Rx models for the SDRAM. The generated
models conform to the IBIS-AMI specification.

DDR5 SDRAM Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up and explores the target transmitter and receiver
architectures using the blocks required for DDR5 in the SerDes Designer app. The SerDes
system is then exported to Simulink® for further customization and IBIS-AMI model
generation.

Type the following command in the MATLAB® command window to open the
ddr5_sdram model:

>> serdesDesigner('ddr5_sdram')

The SDRAM has a DDR5 transmitter (Tx) using no equalization. The SDRAM also has a
DDR5 receiver (Rx) using a variable gain amplifier (VGA) with 7 pre-defined settings and
a 4-tap decision feedback equalizer (DFE) with built-in clock data recovery.

Configuration Setup

• Symbol Time is set to 208.3 ps, since the target operating rate is 4.8Gbps for
DDR5-4800.

• Target BER is set to 100e-18.
• Signaling is set to Single-ended.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

4-17

• Samples per Symbol and Modulation are kept at default values, which are 16 and
NRZ (nonreturn to zero), respectively.

Transmitter Model Setup

• The DDR5 SDRAM has no transmit equalization, so only an analog model is required.
• The Tx AnalogOut model is set up so that Voltage is 1.1 V, Rise time is 100 ps, R

(output resistance) is 48 ohms, and C (capacitance) is 0.65 pF. The actual analog
models used in the final model will be generated later in this example.

Channel Model Setup

• Channel loss is set to 5 dB, which is typical of DDR channels.
• Single-ended impedance is set to 40 ohms.
• Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (input resistance) is 40 ohms and C
(capacitance) is 0.65pF. The actual analog models used in the final model will be
generated later in this example.

• The VGA block is set up with a Gain of 1 and the Mode set to on. Specific VGA presets
will be added later in this example after the model is exported to Simulink.

• The DFECDR block is set up for four DFE taps by including four Initial tap weights
set to 0. The Minimum tap value is set to [-0.2 -0.075 -0.06 -0.045] V, and
the Maximum tap value is set to [0.05 0.075 0.06 0.045] V.

Plot Statistical Results

Use the SerDes Designer Add Plots button to visualize the results of the DDR5 SDRAM
setup.

• Add the BER plot from Add Plots and observe the results.

4 Industry Standard IBIS-AMI Models

4-18

• Add the Pulse Response plot from Add Plots and zoom into the pulse area to observe
the results.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

4-19

Export SerDes System to Simulink

Click Save and then click on the Export button to export the configuration to Simulink
for further customization and generation of the AMI model executables.

DDR5 SDRAM Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes
Designer app and customizes it as required for DDR5 in Simulink.

Review the Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx,
Analog Channel and Rx blocks. All the settings from the SerDes Designer app have been
transferred to the Simulink model. Save the model and review each block setup.

4 Industry Standard IBIS-AMI Models

4-20

• Double-click the Configuration block to open the Block Parameters dialog box. The
parameter values for Symbol time, Samples per symbol, Target BER, Modulation
and Signaling are carried over from the SerDes Designer app.

• Double-click the Stimulus block to open the Block Parameters dialog box. You can set
the PRBS (pseudorandom binary sequence) order and the number of symbols to
simulate. This block is not carried over from the SerDes Designer app.

• Double-click the Tx block to look inside the Tx subsystem. Since there is no
algorithmic model for the transmitter, the Tx subsystem is simply a pass through from
the WaveIn to WaveOut ports.

• Double-click the Analog Channel block to open the Block Parameters dialog box. The
parameter values for Target frequency, Loss, Impedance and Tx/Rx Analog Model
parameters are carried over from the SerDes Designer app.

• Double-click on the Rx block to look inside the Rx subsystem. The subsystem has the
VGA and DFECDR blocks carried over from the SerDes Designer app. An Init block is
also introduced to model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes system.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is
updated as the model is running.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

4-21

After the simulation has completed the second plot contains four views of the statistical
(Init) results, similar to what is available in the SerDes Designer app.

4 Industry Standard IBIS-AMI Models

4-22

Review Rx VGA Block

• Inside the Rx subsystem, double-click the VGA block to open the VGA Block
Parameters dialog box.

• The Mode and Gain settings are carried over from the SerDes Designer app.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

4-23

Update Rx DFECDR Block

• Inside the Rx subsystem, double-click the DFECDR block to open the DFECDR Block
Parameters dialog box.

• The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS
settings are carried over from the SerDes Designer app. The Adaptive gain and
Adaptive step size are set to 3e-06 and 1e-06, respectively, which are reasonable
values based on DDR5 SDRAM expectations.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in
the IBIS-AMI model.

• Deselect Phase offset and Reference offset to remove these parameters from the
AMI file, effectively hard-coding these parameters to their current values.

Generate DDR5 SDRAM IBIS-AMI Models

The final part of this example takes the customized Simulink model, modifies the AMI
parameters for a DDR5 SDRAM, and then generates IBIS-AMI compliant DDR5 SDRAM
model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open
SerDes IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI
manager dialog box, the analog model values are converted to standard IBIS parameters
that can be used by any industry-standard simulator.

Review Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. Notice that there are
no model-specific parameters since the DDR5 SDRAM Tx does not have any equalization.

Update Receiver (Rx) AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box. The reserved
parameters are listed first followed by the model-specific parameters adhering to the
format of a typical AMI file.

Set the VGA Gain:

• Highlight Gain.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• In the Description box, type Rx Amplifier Gain.

4 Industry Standard IBIS-AMI Models

4-24

• Make sure Format is set to List and set Default to 1.
• In the List values box, enter [0.5 0.631 0.794 1 1.259 1.585 2]
• In the List_Tip values box, enter ["-6 dB" "-4 dB" "-2 dB" "0 dB" "2 dB"

"4 dB" "6 dB"]
• Click OK to save the changes.

Set First DFE Tap Weight

• Highlight TapWeight 1.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.05.
• Click OK.

Set Second DFE Tap Weight

• Highlight TapWeight 2.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.075, and Max =

0.075
• Click OK.

Set Third DFE Tap Weight

• Highlight TapWeight 3.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.06, and Max = 0.06
• Click OK.

Set Fourth DFE Tap Weight

• Highlight TapWeight 4.
• Click the Edit… button to launch the Add/Edit AMI Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.045, and Max =

0.045
• Click OK.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

4-25

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Jitter & Noise... button to bring up
the Rx Jitter&Noise dialog, select the Rx_Receiver_Sensitivity,
Rx_Clock_Recovery_DCD, Rx_Clock_Recovery_Dj and Rx_Clock_Recovery_Rj boxes
and click OK to add these parameters to the Reserved Parameters section of the Rx AMI
file. The following ranges allow you to fine-tune the jitter values to meet DDR5 jitter mask
requirements.

Set Rx Receiver Sensitivity Value

• Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit
AMI Parameter dialog.

• Set the Current Value to 0.04
• Change the Format to Value.
• Click OK to save the changes.

Set Rx Clock Recovery DCD Jitter Value

• Select Rx_Clock_Recovery_DCD, then click the Edit... button to bring up the Add/
Edit AMI Parameter dialog.

• Set the Current Value to 0.0125
• Change the Type to UI.
• Change the Format to Value.
• Click OK to save the changes.

Set Rx Clock Recovery Dj Jitter Value

• Select Rx_Clock_Recovery_Dj, then click the Edit... button to bring up the Add/Edit
AMI Parameter dialog.

• Set the Current Value to 0.0175
• Change the Type to UI.
• Change the Format to Value.
• Click OK to save the changes.

Set Rx Clock Recovery Rj Jitter Value

• Select Rx_Clock_Recovery_Rj, then click the Edit... button to bring up the Add/Edit
AMI Parameter dialog.

4 Industry Standard IBIS-AMI Models

4-26

• Set the Current Value to 0.00375
• Change the Type to UI.
• Change the Format to Value.
• Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

• Update the Tx model name to ddr5_sdram_tx.
• Update the Rx model name to ddr5_sdram_rx.
• Note that Tx and Rx corner percentage is set to 10. This scales the minimum/

maximum analog model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI model settings.

This creates model executables that support both statistical (Init) analysis and time-
domain (GetWave) simulation.

• Set the Rx model Bits to ignore value to 250000 to allow sufficient time for the Rx
DFE taps to settle during time domain simulations.

• Set the Models to export to Rx only and ensure that all files have been selected to
be generated (IBIS file, AMI file(s) and DLL file(s)).

• Set the IBIS file name to temp_ddr5_sdram.
• Click the Export button to generate models in the Target directory.

Update DDR5 Analog Models

To accommodate different topologies, loading configurations, data rates and transfers,
DDR5 requires variable output drive strength and input on-die termination (ODT). While
the same algorithmic AMI model is used, multiple analog models are required to cover all
these use cases. The generation of these analog models is out of scope for this example,
so a completed IBS file with the following analog models in it is available in the current
example directory:

• POD11_IO_ZO34_ODTOFF: 34 ohm output impedance with no input ODT.
• POD11_IO_ZO48_ODTOFF: 48 ohm output impedance with no input ODT.
• POD11_IN_ODT34_C: Input with 34 ohm ODT.
• POD11_IN_ODT40_C: Input with 40 ohm ODT.

 DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model

4-27

• POD11_IN_ODT48_C: Input with 48 ohm ODT.
• POD11_IN_ODT60_C: Input with 60 ohm ODT.
• POD11_IN_ODT80_C: Input with 80 ohm ODT.
• POD11_IN_ODT120_C: Input with 120 ohm ODT.
• POD11_IN_ODT240_C: Input with 240 ohm ODT.

To generate this complete IBIS file, the following changes were made to
temp_ddr5_sdram.ibs using a text editor:

• Created one pin with a signal_name of DQ1_sdram and model_name of dq.
• Added two drivers with Model_type of I/O and named them POD11_IO_Z034_ODTOFF

and POD11_IO_Z048_ODTOFF, respectively.
• Added seven receiver models and named them:

a) POD11_IN_ODT34_C

b) POD11_IN_ODT40_C

c) POD11_IN_ODT48_C

d) POD11_IN_ODT60_C

e) POD11_IN_ODT80_C

f) POD11_IN_ODT120_C

g) POD11_IN_ODT240_C

• Added VI curves and Algorithmic Model sections to all above mentioned models.
• Added a Model Selector section that references all above mentioned models.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be
tested in any industry-standard AMI model simulator.

4 Industry Standard IBIS-AMI Models

4-28

DDR5 Controller Transmitter/Receiver IBIS-AMI Model
This example shows how to create generic DDR5 transmitter and receiver IBIS-AMI
models using the library blocks in SerDes Toolbox™. Since DDR5 DQ signals are
bidirectional, this example creates Tx and Rx models for the controller. The generated
models conform to the IBIS-AMI specification.

DDR5 Controller Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up and explores the target transmitter and receiver
architectures using the blocks required for DDR5 in the SerDes Designer app. The SerDes
system is then exported to Simulink® for further customization and IBIS-AMI Model
generation.

Type the following command in the MATLAB® command window to open the
ddr5_controller model:

>> serdesDesigner('ddr5_controller')

The controller has a DDR5 transmitter (Tx) using 5-tap feed forward equalization (FFE).
The controller also has a DDR5 receiver (Rx) using a continuous time linear equalizer
(CTLE) with 8 pre-defined settings, an automatic gain control (AGC), and a 4-tap decision
feedback equalizer (DFE) with built-in clock data recovery.

Configuration Setup

• Symbol Time is set to 208.3 ps, since the target operating rate is 4.8 Gbps for
DDR5-4800.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

4-29

• Target BER is set to 100e-18.
• Signaling is set to Single-ended.
• Samples per Symbol and Modulation are kept at default values, which are

respectively 16 and NRZ (nonreturn to zero), respectively.

Transmitter Model Setup

• The Tx FFE block is set up for one pre-tap, one main-tap, and three post-taps by
including five tap weights. This is done with the array [0 1 0 0 0], where the main tap
is specified by the largest value in the array. Tap ranges will be added later in the
example when the model is exported to Simulink.

• The Tx AnalogOut model is set up so that Voltage is 1.1 V, Rise time is 100 ps, R
(output resistance) is 50 ohms, and C (capacitance) is 0.65 pF. The actual analog
models used in the final model will be generated later in this example.

Channel Model Setup

• Channel loss is set to 5 dB, which is typical of DDR channels.
• Single-ended impedance is set to 40 ohms.
• Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (input resistance) is 40 Ohms and C
(capacitance) is 0.65pF. The actual analog models used in the final model will be
generated later in this example.

• The CTLE block is set up for 8 configurations. The Specification is set to DC Gain
and AC Gain. DC Gain is set to [0 -1 -2 -3 -4 -5 -6 -7] dB. Peaking
frequency is set to 2.4 GHz. All other parameters are kept at their default values.

• The AGC block has the default Target RMS voltage of 0.3 Volts.
• The DFECDR block is set up for four DFE taps by including four Initial tap weights

set to 0. The Minimum tap value is set to [-0.2 -0.075 -0.06 -0.045] V and
the Maximum tap value is set to [0.05 0.075 0.06 0.045] V.

Plot Statistical Results

Use the SerDes Designer Add Plots button to visualize the results of the DDR5 Controller
setup.

Add the BER plot from Add Plots and observe the results.

4 Industry Standard IBIS-AMI Models

4-30

Add the Pulse Response plot from Add Plots and zoom into the pulse area to observe the
results.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

4-31

Export SerDes System to Simulink

Click Save and then click on the Export button to export the configuration to Simulink
for further customization and generation of the AMI model executables.

DDR5 Controller Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes
Designer app and customizes it as required for DDR5 in Simulink.

4 Industry Standard IBIS-AMI Models

4-32

Review the Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx,
Analog Channel and Rx blocks. All the settings from the SerDes Designer app have been
transferred to the Simulink model. Save the model and review each block setup.

• Double-click the Configuration block to open the Block Parameters dialog box. The
parameter values for Symbol time, Samples per symbol, Target BER, Modulation,
and Signaling are carried over from the SerDes Designer app.

• Double-click the Stimulus block to open the Block Parameters dialog box. You can set
the PRBS (pseudorandom binary sequence) order and the number of symbols to
simulate. This block is not carried over from the SerDes Designer app.

• Double-click the Tx block to look inside the Tx subsystem. The subsystem has the FFE
block carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

• Double-click the Analog Channel block to open the Block Parameters dialog box. The
parameter values for Target frequency, Loss, Impedance and Tx/Rx Analog Model
parameters are carried over from the SerDes Designer app.

• Double-click on the Rx block to look inside the Rx subsystem. The subsystem has the
CTLE, AGC and DFECDR blocks carried over from the SerDes Designer app. An Init
block is also introduced to model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes system.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is
updated as the model is running.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

4-33

After the simulation has completed the second plot contains four views of the statistical
(Init) results, similar to what is available in the SerDes Designer app.

4 Industry Standard IBIS-AMI Models

4-34

Review Tx FFE Block

• Inside the Tx subsystem, double-click the FFE block to open the FFE Block Parameters
dialog box.

• The Tap Weights are carried over from the SerDes Designer app.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

4-35

Review Rx CTLE Block

• Inside the Rx subsystem, double-click the CTLE block to open the CTLE Block
Parameters dialog box.

• DC gain, AC gain, and Peaking frequency are carried over from the SerDes
Designer app.

• CTLE Mode is set to Adapt, which means an optimization algorithm built into the
CTLE system object selects the optimal CTLE configuration at run time.

Review Rx AGC Block

• Inside the Rx subsystem, double-click the AGC block to open the AGC Block
Parameters dialog box.

• The Target RMS voltage is carried over from the SerDes Designer app.
• The Maximum gain is set to 10 and Averaging length (the number of bits over

which the average is calculated) is set to 100. These values are reasonable for a
generic controller model.

Update Rx DFECDR Block

• Inside the Rx subsystem, double-click the DFECDR block to open the DFECDR Block
Parameters dialog box.

• The Initial tap weights, Minimum DFE tap value, and Maximum tap value RMS
settings are carried over from the SerDes Designer app. The Adaptive gain and
Adaptive step size are set to 3e-06 and 1e-06, respectively, which are reasonable
values based on DDR5 Controller expectations.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in
the IBIS-AMI model.

• Deselect Phase offset and Reference offset to remove these parameters from the
AMI file, effectively hard-coding these parameters to their current values.

Generate DDR5 Controller IBIS-AMI Models

The final part of this example takes the customized Simulink model, modifies the AMI
parameters for a DDR5 Controller, and then generates IBIS-AMI-compliant DDR5
Controller model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open
SerDes IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI

4 Industry Standard IBIS-AMI Models

4-36

manager dialog box, the analog model values are converted to standard IBIS parameters
that can be used by any industry-standard simulator.

Update Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. The reserved
parameters are listed first followed by the model-specific parameters adhering to the
format of a typical AMI file.

Set Pre-Emphasis Tap

• Highlight TapWeight -1
• Click the Edit... to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.2.
• Click OK to save the changes.

Set Main Tap

• Highlight TapWeight 0.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 1, Min = 0.6, and Max = 1.
• Click OK.

Set First Post-Emphasis Tap

• Highlight TapWeight 1.
• Select the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.2.
• Click OK.

Set Second Post-Emphasis Tap

• Highlight TapWeight 2.
• Select the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min= -0.1, and Max = 0.1.
• Click OK.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

4-37

Set Third Post-Emphasis Tap

• Highlight TapWeight 3.
• Select the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.1, and Max = 0.1.
• Click OK.

Update Receiver (Rx) AMI Parameters

Open the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box. The reserved
parameters are listed first followed by the model-specific parameters adhering to the
format of a typical AMI file.

Set First DFE Tap Weight

• Highlight TapWeight 1.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.2, and Max = 0.05.
• Click OK.

Set Second DFE Tap Weight

• Highlight TapWeight 2.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.075, and Max =

0.075.
• Click OK.

Set Third DFE Tap Weight

• Highlight TapWeight 3.
• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.06, and Max = 0.06.
• Click OK.

Set Fourth DFE Tap Weight

• Highlight TapWeight 4.

4 Industry Standard IBIS-AMI Models

4-38

• Click the Edit… button to launch the Add/Edit Parameter dialog box.
• Make sure Format is set to Range and set Typ = 0, Min = -0.045, and Max =

0.045.
• Click OK.

Add Rx Jitter Parameters

To add Jitter parameters for the Rx model click the Jitter & Noise... button to bring up
the Rx Jitter&Noise dialog, select the Rx_Receiver_Sensitivity,
Rx_Clock_Recovery_DCD, Rx_Clock_Recovery_Dj and Rx_Clock_Recovery_Rj boxes
and click OK to add these parameters to the Reserved Parameters section of the Rx AMI
file. The following ranges allow you to fine-tune the jitter values to meet DDR5 jitter mask
requirements.

Set Rx Receiver Sensitivity Value

• Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit
AMI Parameter dialog.

• Set the Current Value to 0.04
• Change the Format to Value.
• Click OK to save the changes.

Set Rx Clock Recovery DCD Jitter Value

• Select Rx_Clock_Recovery_DCD, then click the Edit... button to bring up the Add/
Edit AMI Parameter dialog.

• Set the Current Value to 0.0125
• Change the Type to UI.
• Change the Format to Value.
• Click OK to save the changes.

Set Rx Clock Recovery Dj Jitter Value

• Select Rx_Clock_Recovery_Dj, then click the Edit... button to bring up the Add/Edit
AMI Parameter dialog.

• Set the Current Value to 0.0175
• Change the Type to UI.
• Change the Format to Value.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

4-39

• Click OK to save the changes.

Set Rx Clock Recovery Rj Jitter Value

• Select Rx_Clock_Recovery_Rj, then click the Edit... button to bring up the Add/Edit
AMI Parameter dialog.

• Set the Current Value to 0.00375
• Change the Type to UI.
• Change the Format to Value.
• Click OK to save the changes.

Export Models

Open the Export tab in the SerDes IBIS-AMI manager dialog box.

• Update the Tx model name to ddr5_controller_tx
• Update the Rx model name to ddr5_controller_rx
• Note that Tx and Rx corner percentage is set to 10. This scales the minimum/

maximum analog model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI model settings.

This creates model executables that support both statistical (Init) analysis and time-
domain (GetWave) simulation.

• Set the Tx model Bits to ignore to 5 since there are five taps in the Tx FFE.
• Set the Rx model Bits to ignore to 250000 to allow sufficient time for the Rx DFE

taps to settle during time domain simulations.
• Verify that both Tx and Rx are set to export and that all files have been selected to be

generated (IBIS file, AMI file(s) and DLL file(s)).
• Set the IBIS file name to temp_ddr5_controller.ibs
• Click the Export button to generate models in the Target directory.

Update DDR5 Analog Models

To accommodate different topologies, loading configurations, data rates and transfers,
DDR5 requires variable output drive strength and input on-die termination (ODT). While
the same algorithmic AMI model is used, multiple analog models are required to cover all
these use cases. The generation of these analog models is out of scope for this example,
so a completed IBS file with the following analog models in it is available in the current
example directory:

4 Industry Standard IBIS-AMI Models

4-40

• POD11_IO_ZO50_ODTOFF: 50 ohm output impedance with no input ODT.
• POD11_IN_ODT40_C: Input with 40 ohm ODT.
• POD11_IN_ODT60_C: Input with 60 ohm ODT.

To generate this complete IBIS file, the following changes were made to
temp_ddr5_controller.ibs using a text editor:

• Created one pin with a signal_name of DQ1_controller and model_name of dq.
• Changed the driver Model_type to I/O and named it POD11_IO_Z050_ODTOFF.
• Added two receiver models and named them POD11_IN_ODT40_C and

POD11_IN_ODT60_C, respectively.
• Added VI curves and Algorithmic Model sections to all above mentioned models.
• Added a Model Selector section that references the above mentioned models.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be
tested in any industry-standard AMI model simulator.

 DDR5 Controller Transmitter/Receiver IBIS-AMI Model

4-41

CEI-56G-LR Transmitter/Receiver IBIS-AMI Model
This example shows how to create generic CEI-56G-LR transmitter and receiver IBIS-AMI
models using the library blocks in SerDes Toolbox™. The generated models conform to
the IBIS-AMI and OIF-CEI-04.0 specifications.

CEI-56G-LR Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model
architecture using the datapath blocks required for CEI-56G in the SerDes Designer app.
The model is then exported to Simulink® for further customization.

This example uses the SerDes Designer model cei_56G_lr_txrx. Type the following
command in the MATLAB® command window to open the model:

>> serdesDesigner('cei_56g_lr_txrx')

A CEI-56G-LR compliant transmitter uses a 4-tap feed forward equalizer (FFE) with two
pre-taps and one post-tap. The receiver model uses a continuous time linear equalizer
(CTLE) with 17 pre-defined settings, and a 12 to 18 tap decision feedback equalizer
(DFE). To support this configuration the SerDes System is set up as follows:

Configuration Setup

• Symbol Time is set to 35.71 ps, for a symbol rate of 28 GBaud and a PAM4 rate of 56
Gbps.

• Target BER is set to 100e-6, which assumes a compliant receiver with FEC.
• Modulation is set to PAM4.
• Samples per Symbol and Signaling are kept at default values, which are

respectively 16 and Differential.

4 Industry Standard IBIS-AMI Models

4-42

Transmitter Model Setup

• The Tx FFE block is set up for two pre-taps and one post-tap by including four tap
weights, as specified in the OIF-CEI-04.0 specification. This is done with the array [0 0
1 0], where the main tap is specified by the largest value in the array.

• The Tx AnalogOut model is set up so that Voltage is 1.0 V, Rise time is 2.905 ps, R
(single-ended output resistance) is 50 Ohms, and C (capacitance) is 0.16 pF.

Channel Model Setup

• Channel loss is set to 20 dB.
• Differential impedance is kept at default 100 Ohms.
• Target Frequency is set to the Nyquist frequency, 14 GHz.

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (single-ended input resistance) is 50 Ohms
and C (capacitance) is 0.16 pF.

• The Rx CTLE block is set up for 147 configurations using the GPZ (Gain Pole Zero)
matrix.

• The Rx DFE/CDR block is set up for 18 DFE taps. The limits for the taps are set to
-0.7 to 0.7.

Plot Statistical Results

Use the SerDes Designer plots to visualize the results of the CEI-56G-LR setup.

Add the BER plot from Add Plots and observe the results.

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

4-43

Add the report from Add Plots and observe that the CTLE Config is 129.

Change the Rx CTLE Mode parameter to fixed and the ConfigSelect parameter value
from 129 to 8 and observe how this changes the data eye.

4 Industry Standard IBIS-AMI Models

4-44

Before continuing, reset the value of Rx CTLE Mode back to adapt. Resetting here will
avoid the need to set it again after the model has been exported to Simulink.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further
customization and generation of the AMI model executables.

CEI-56G-LR Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes
Designer app and customizes it as required for CEI-56G-LR in Simulink.

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

4-45

Review Simulink Model Setup

The SerDes System exported into Simulink consists of Configuration, Stimulus, Tx, Analog
Channel and Rx blocks. All the settings from the SerDes Designer app have been
transferred to the Simulink model. Save the model and review each block setup.

• Double click the Configuration block to open the Block Parameters dialog box. The
parameter values for Symbol time, Samples per symbol, Target BER, Modulation
and Signaling are carried over from the SerDes Designer app.

• Double click the Stimulus block to open the Block Parameters dialog box. You can set
the PRBS (pseudorandom binary sequence) order and the number of symbols to
simulate. The settings for this block are not carried over from the SerDes Designer
app.

• Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE
block carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

• Double click the Analog Channel block to open the Block Parameters dialog box. The
parameter values for Target frequency, Loss, Impedance and Tx/Rx analog model
parameters are carried over from the SerDes Designer app.

• Double click on the Rx block to look inside the Rx subsystem. The subsystem has the
CTLE and DFECDR blocks carried over from the SerDes Designer app. An Init block is
also introduced to model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is
updated as the model is running.

4 Industry Standard IBIS-AMI Models

4-46

After the simulation has completed the second plot contains four views of the statistical
(Init) results, similar to what is available in the SerDes Designer App.

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

4-47

Update Tx FFE Block

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters
dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in
the IBIS-AMI model.

4 Industry Standard IBIS-AMI Models

4-48

• Deselect the Mode parameter to remove this parameter from the AMI file, effectively
hard-coding the current value of Mode in the final AMI model to Fixed.

Review Rx CTLE Block

• Inside the Rx subsystem, double click the CTLE block to open the CTLE Block
Parameters dialog box.

• Gain pole zero data is carried over from the SerDes Designer app.
• CTLE Mode is set to Adapt, which means an optimization algorithm built into the

CTLE system object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block
Parameters dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in
the IBIS-AMI model.

• Deselect the Phase offset and Reference offset parameters to remove these
parameters from the AMI file, effectively hard-coding these parameters to their
current values.

Generate CEI-56G-LR Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI
parameters for CEI-56G-LR, then generates IBIS-AMI compliant CEI-56G-LR model
executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the SerDes
IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog
box, the analog model values are converted to standard IBIS parameters that can be used
by any industry standard simulator. In the AMI-Tx and AMI-Rx tabs in the SerDes IBIS-
AMI manager dialog box, the reserved parameters are listed first followed by the model
specific parameters following the format of a typical AMI file.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model, in the AMI-Tx tab click the Jitter & Noise...
button to bring up the Tx Jitter&Noise dialog, select the Tx_DCD, Tx_Dj and Tx_Rj boxes
and click OK to add these parameters to the Reserved Parameters section of the Tx AMI
file. The following ranges allow you to fine-tune the jitter values to meet CEI-56G-LR jitter
mask requirements.

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

4-49

Set Tx DCD Jitter Value

• Select Tx_DCD, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.1
• Click OK to save the changes.

Set Tx Dj Jitter Value

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.1
• Click OK to save the changes.

Set Tx Rj Jitter Value

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.05

4 Industry Standard IBIS-AMI Models

4-50

• Click OK to save the changes.

Export Models

Select the Export tab in the SerDes IBIS-AMI manager dialog box.

• Update the Tx model name to cei_56g_lr_tx
• Update the Rx model name to cei_56g_lr_rx
• Note that the Tx and Rx corner percentage is set to 10%. This will scale the min/max

analog model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx. This will create model

executables that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Tx model Bits to ignore value to 4 since there are four taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 200000 to allow sufficient time for the Rx

DFE taps to settle during time domain simulations.
• Verify that Both Tx and Rx are set to Export and that all files have been selected to

be generated (IBIS file, AMI files and DLL files).
• Set the IBIS file name to be cei_56g_lr_serdes.ibs
• Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The CEI-56G-LR transmitter and receiver IBIS-AMI models are now complete and ready
to be tested in any industry standard AMI model simulator.

References

IBIS 6.1 Specification, https://ibis.org/ver6.1/ver6_1.pdf

 CEI-56G-LR Transmitter/Receiver IBIS-AMI Model

4-51

https://ibis.org/ver6.1/ver6_1.pdf

USB3.1 Transmitter/Receiver IBIS-AMI Model
This example shows how to create generic Universal Serial Bus version 3.1 (USB3.1)
transmitter and receiver IBIS-AMI models using the library blocks in SerDes Toolbox™.
The generated models conform to the IBIS-AMI and USB3.1 specifications.

USB3.1 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example sets up the target transmitter and receiver AMI model
architecture using the datapath blocks required for USB3.1 in the SerDes Designer app.
The model is then exported to Simulink® for further customization.

This example uses the SerDes Designer model usb3_1_txrx_ami. Type the following
command in the MATLAB® command window to open the model:

>> serdesDesigner('usb3_1_txrx_ami')

A USB3.1 compliant transmitter uses a 3-tap feed forward equalizer (FFE) with one pre-
tap and one post-tap. The receiver model uses a continuous time linear equalizer (CTLE)
with seven pre-defined settings, and a 1-tap decision feedback equalizer (DFE). To
support this configuration the SerDes System is set up as follows:

Configuration Setup

• Symbol Time is set to 100 ps, since the maximum allowable USB3.1 operating
frequency is 10 GHz.

• Target BER is set to 1e-12 as specified in the USB3.1 specification.
• Samples per Symbol, Modulation, and Signaling are kept at default values, which

are respectively 16, NRZ (non-return to zero), and Differential.

4 Industry Standard IBIS-AMI Models

4-52

Transmitter Model Setup

• The Tx FFE block is set up for one pre- and one post-tap by including three tap
weights, as specified in the USB3.1 specification. This is done with the array [0 1 0],
where the main tap is specified by the largest value in the array.

• The Tx AnalogOut model is set up so that Voltage is 1.00 V, Rise time is 60 ps, R
(single-ended output resistance) is 50 Ohms, and C (capacitance) is 0.5 pF.

Channel Model Setup

• Channel loss is set to 15dB.
• Differential impedance is kept at default 100 Ohms.
• Target Frequency is set to the Nyquist frequency, 5 GHz.

Receiver Model Setup

• The Rx AnalogIn model is set up so that R (single-ended input resistance) is 50 Ohms
and C (capacitance) is 0.5 pF.

• The Rx CTLE block is set up for 7 configurations. The GPZ (Gain Pole Zero) matrix
data is derived from the transfer function given in the USB3.1 Behavioral CTLE
specification.

• The Rx DFE/CDR block is set up for one DFE tap. The limits for the tap are as defined
by the USB3.1 specification: +/-50 mV.

Plot Statistical Results

Use the SerDes Designer plots to visualize the results of the USB3.1 setup.

Add the BER plot from ADD Plots and observe the results.

 USB3.1 Transmitter/Receiver IBIS-AMI Model

4-53

Change the Rx CTLE Mode parameter from adapt to fixed and change the
ConfigSelect parameter value from 6 to 0 and observe how this changes the data eye.

4 Industry Standard IBIS-AMI Models

4-54

Before continuing, reset the value of Rx CTLE Mode back to adapt. Resetting the value
here will avoid the need to set it again after the model has been exported to Simulink.

Export SerDes System to Simulink

Click on the Export button to export the above configuration to Simulink for further
customization and generation of the AMI model executables.

USB3.1 Tx/Rx IBIS-AMI Model Setup in Simulink

The second part of this example takes the SerDes system exported by the SerDes
Designer app and customizes it as required for USB3.1 in Simulink.

 USB3.1 Transmitter/Receiver IBIS-AMI Model

4-55

Review Simulink Model Setup

The SerDes System imported into Simulink consists of the Configuration, Stimulus, Tx,
Analog Channel and Rx blocks. All the settings from the SerDes Designer app have been
transferred to the Simulink model. Save the model and review each block setup.

• Double click the Configuration block to open the Block Parameters dialog box. The
parameter values for Symbol time, Samples per symbol, Target BER, Modulation
and Signaling are carried over from the SerDes Designer app.

• Double click the Stimulus block to open the Block Parameters dialog box. You can set
the PRBS (pseudorandom binary sequence) order and the number of symbols to
simulate. This block is not carried over from the SerDes Designer app.

• Double click the Tx block to look inside the Tx subsystem. The subsystem has the FFE
block carried over from the SerDes Designer app. An Init block is also introduced to
model the statistical portion of the AMI model.

• Double click the Analog Channel block to open the Block Parameters dialog box. The
parameter values for Target frequency, Loss, Impedance and Tx/Rx Analog Model
parameters are carried over from the SerDes Designer app.

• Double click on the Rx block to look inside the Rx subsystem. The subsystem has the
CTLE and DFECDR blocks carried over from the SerDes Designer app. An Init block is
also introduced to model the statistical portion of the AMI model.

Run the Model

Run the model to simulate the SerDes System.

Two plots are generated. The first is a live time domain (GetWave) eye diagram that is
updated as the model is running.

4 Industry Standard IBIS-AMI Models

4-56

After the simulation has completed the second plot contains four views of the statistical
(Init) results, similar to what is available in the SerDes Designer App.

 USB3.1 Transmitter/Receiver IBIS-AMI Model

4-57

Update Tx FFE Block

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters
dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in
the IBIS-AMI model.

4 Industry Standard IBIS-AMI Models

4-58

• Deselect the Mode parameter to remove this parameter from the AMI file, effectively
hard-coding the current value of Mode in the final AMI model to Fixed.

Review Rx CTLE Block

• Inside the Rx subsystem, double click the CTLE block to open the CTLE Block
Parameters dialog box.

• Gain pole zero data is carried over from the SerDes Designer app. This data is
derived from the transfer function given in the USB3.1 Behavioral CTLE specification.

• CTLE Mode is set to Adapt, which means an optimization algorithm built into the
CTLE system object selects the optimal CTLE configuration at run time.

Update Rx DFECDR Block

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block
Parameters dialog box.

• Expand the IBIS-AMI parameters to show the list of parameters to be included in
the IBIS-AMI model.

• Deselect the Phase offset and Reference offset parameters to remove these
parameters from the AMI file, effectively hard-coding these parameters to their
current values.

Generate USB3.1 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model, modifies the AMI
parameters for USB3.1, then generates IBIS-AMI compliant USB3.1 model executables,
IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the SerDes
IBIS-AMI Manager button. In the IBIS tab inside the SerDes IBIS-AMI manager dialog
box, the analog model values are converted to standard IBIS parameters that can be used
by any industry standard simulator. In the AMI-Tx and AMI-Rx tabs in the SerDes IBIS-
AMI manager dialog box, the reserved parameters are listed first followed by the model
specific parameters following the format of a typical AMI file.

Add Tx Jitter Parameters

To add Jitter parameters for the Tx model, in the AMI-Tx tab click the Jitter & Noise...
button to bring up the Tx Jitter&Noise dialog, select the Tx_Dj and Tx_Rj boxes and click
OK to add these parameters to the Reserved Parameters section of the Tx AMI file. The

 USB3.1 Transmitter/Receiver IBIS-AMI Model

4-59

following ranges allow you to fine-tune the jitter values to meet USB3.1 jitter mask
requirements.

Set Tx Dj Jitter Value

• Select Tx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.17
• Click OK to save the changes.

Set Tx Rj Jitter Value

• Select Tx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.012
• Click OK to save the changes.

Add Rx Jitter and Noise Parameters

To add Jitter parameters for the Rx model, in the AMI-Rx tab click the Jitter & Noise...
button to bring up the Rx Jitter&Noise dialog, select the Rx_Receiver_Sensitivity, Rx_Dj
and Rx_Rj boxes and click OK to add these parameters to the Reserved Parameters
section of the Rx AMI file. The following ranges allow you to fine-tune the jitter values to
meet USB3.1 jitter mask requirements.

4 Industry Standard IBIS-AMI Models

4-60

Set Rx Receiver_Sensitivity Value

• Select Rx_Receiver_Sensitivity, then click the Edit... button to bring up the Add/Edit
AMI Parameter dialog.

• Set the Current Value to 0.025
• Change the Format to Range.
• Set the Typ value to 0.025
• Set the Min value to 0.015
• Set the Max value to 0.100
• Click OK to save the changes.

Set Rx Dj Jitter Value

• Select Rx_Dj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.3
• Click OK to save the changes.

Set Rx Rj Jitter Value

• Select Rx_Rj, then click the Edit... button to bring up the Add/Edit AMI Parameter
dialog.

• Set the Current Value to 0.0.
• Change the Type to UI.
• Change the Format to Range.
• Set the Typ value to 0.
• Set the Min value to 0.
• Set the Max value to 0.015
• Click OK to save the changes.

 USB3.1 Transmitter/Receiver IBIS-AMI Model

4-61

Export Models

Select the Export tab in the SerDes IBIS-AMI manager dialog box.

• Update the Tx model name to usb3_1_tx
• Update the Rx model name to usb3_1_rx
• Note that the Tx and Rx corner percentage is set to 10%. This will scale the min/max

analog model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx. This will create model

executables that support both statistical (Init) and time domain (GetWave) analysis.
• Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 20000 to allow sufficient time for the Rx

DFE taps to settle during time domain simulations.
• Verify that Both Tx and Rx are set to Export and that all files have been selected to

be generated (IBIS file, AMI files and DLL files).
• Set the IBIS file name to be usb3_1_serdes.ibs
• Press the Export button to generate models in the Target directory.

Test Generated IBIS-AMI Models

The USB3.1 transmitter and receiver IBIS-AMI models are now complete and ready to be
tested in any industry standard AMI model simulator.

References

USB, https://www.usb.org

IBIS 6.1 Specification, https://ibis.org/ver6.1/ver6_1.pdf

4 Industry Standard IBIS-AMI Models

4-62

https://www.usb.org/
https://ibis.org/ver6.1/ver6_1.pdf

Design DDR5 IBIS-AMI Models to Support Back-Channel
Link Training

This example shows how to create transmitter and receiver AMI models that support link
training communication (back-channel) as defined in the IBIS 7.0 specification by adding
to the library blocks in SerDes Toolbox™. This example uses a DDR5 write transfer
(Controller to SDRAM) to demonstrate the setup.

DDR5 Tx/Rx IBIS-AMI Model Setup in SerDes Designer App

The first part of this example starts with the DDR5 controller transmitter model from
DDR5 Controller Transmitter/Receiver IBIS-AMI Model and the SDRAM receiver AMI
model from DDR5 SDRAM Transmitter/Receiver IBIS-AMI Model. Add a few additional
pass-through blocks to support the back-channel communication and export the model to
Simulink® for further customization.

Open the model DDR5_Write_txrx_ami by typing the following command in the
MATLAB® command window:

>> serdesDesigner('DDR5_Write_txrx_ami')

For a write transaction, the transmitter (Tx) is a DDR5 controller using 3-tap feed forward
equalization (FFE), while the receiver (Rx) is using a variable gain amplifier (VGA) with 7
pre-defined settings and a 4-tap decision feedback equalizer (DFE) with built-in clock data
recovery. To support this configuration the SerDes System is set up as follows:

Configuration Setup

• Symbol Time is set to 208.3 ps, since the target operating rate is 4.8Gbps for
DDR5-4800.

• Target BER is set to 100e-18.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-63

https://localhost:31530/toolbox/matlab/codetools/liveeditor/doc_id:serdes_ug#mw_21215129-6cb1-496b-a049-cbe37c927a86
https://localhost:31530/toolbox/matlab/codetools/liveeditor/doc_id:serdes_ug#mw_ac48a8de-9c67-4b54-ad0b-146b91f09983

• Signaling is set to Single-ended.
• Samples per Symbol and Modulation are kept at default values, which are 16 and

NRZ (nonreturn to zero), respectively.

Transmitter Model Setup

• The Pass-Through block Tx_BCI is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

• The Tx FFE block is set up for one pre-tap, one main-tap, and one post-tap by
including three tap weights. This is done with the array [0 1 0], where the main tap is
specified by the largest value in the array. Tap ranges will be added later in the
example when the model is exported to Simulink.

• The Tx AnalogOut model is set up so that Voltage is 1.1 V, Rise time is 100 ps, R
(output resistance) is 50 ohms, and C (capacitance) is 0.65 pF. The actual analog
models used in the final model will be generated later in this example.

Channel Model Setup

• Channel loss is set to 5 dB, which is typical of DDR channels.
• Single-ended impedance is set to 40 ohms.
• Target Frequency is set to 2.4 GHz, which is the Nyquist frequency for 4.8 GHz

Receiver Model Setup

• The Pass-Through block Rx_BCI_Read is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

• The Rx AnalogIn model is set up so that R (input resistance) is 40 ohms and C
(capacitance) is 0.65pF. The actual analog models used in the final model will be
generated later in this example.

• The VGA block is set up with a Gain of 1 and the Mode set to on. Specific VGA presets
will be added later in this example after the model is exported to Simulink.

• The DFECDR block is set up for four DFE taps by including four Initial tap weights
set to 0. The Minimum tap value is set to [-0.2 -0.075 -0.06 -0.045] V, and
the Maximum tap value is set to [0.05 0.075 0.06 0.045] V.

• The Pass-Through block Rx_BCI_Write is a block used to support this back-channel
implementation. The operation of this block will be described later in this example.

4 Industry Standard IBIS-AMI Models

4-64

Export SerDes System to Simulink

Click on the Export button to export the configuration to Simulink for further
customization and generation of the AMI model executables.

DDR5 Tx/Rx IBIS-AMI Model Setup in Simulink

This part of the example takes the SerDes system exported by the SerDes Designer app
and customizes it as required for DDR5 back-channel operation in Simulink.

Review Simulink Model Setup

The SerDes System imported into Simulink consists of Configuration, Stimulus, Tx,
Analog Channel and Rx blocks. All the settings from the SerDes Designer app are
transferred to the Simulink model. Save the model and review each block setup.

• Inside the Tx subsystem, double click the FFE block to open the FFE Block Parameters
dialog box. Expand the IBIS-AMI parameters and deselect the Mode parameter,
effectively hard-coding the current value of Mode in the final AMI model to Fixed.

• Inside the Rx subsystem, double click the VGA block to open the VGA Block
Parameters dialog box. The Mode and Gain settings are carried over from the SerDes
Designer app.

• Inside the Rx subsystem, double click the DFECDR block to open the DFECDR Block
Parameters dialog box. The Initial tap weights, Minimum DFE tap value, and
Maximum tap value RMS settings are carried over from the SerDes Designer app.
The Adaptive gain and Adaptive step size are set to 3e-06 and 1e-06, respectively,
which are reasonable values based on DDR5 SDRAM expectations. Expand the IBIS-
AMI parameters and deselect Phase offset and Reference offset parameters,
effectively hard-coding these parameters to their current values.

Update Transmitter (Tx) AMI Parameters

Open the AMI-Tx tab in the SerDes IBIS-AMI manager dialog box. The reserved
parameters are listed first followed by the model-specific parameters adhering to the
format of a typical AMI file.

• Set the pre-emphasis tap: Edit TapWeights -1 and set Format to Range, Typ to 0,
Min to -0.2, and Max to 0.2.

• Set the main tap: Edit TapWeights 0 and set Format to Range, Typ to 1, Min to 0.6,
and Max to 1.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-65

• Set the post-emphasis tap: Edit TapWeights 1 and set Format to Range, Typ to 0,
Min to -0.2, and Max to 0.2.

Create new Tx back-channel AMI parameters

To support back-channel operation, additional control parameters are needed. In the
AMI-Tx tab in the SerDes IBIS-AMI manager dialog, highlight Tx_BCI and add the
following 6 new parameters:

• FFE_Tapm1: This parameter creates a Data Store that is used to pass the FFE pre tap
value between Tx blocks during training. Click the Add Parameter… button. Set
Parameter Name to FFE_Tapm1, Current Value to 0, Usage to InOut, Type to
Float, and Format to Value. Set the Description as: Tx FFE Tap -1 for back-
channel training. Save the changes.

• FFE_Tap0: This parameter creates a Data Store that is used to pass the FFE main tap
value between Tx blocks during training. Click the Add Parameter… button. Set
Parameter Name to FFE_Tap0, Current Value to 0, Usage to InOut, Type to
Float, and Format to Value. Set the Description as: Tx FFE Tap 0 for back-
channel training. Save the changes.

• FFE_Tap1: This parameter creates a Data Store that is used to pass the FFE post tap
value between Tx blocks during training. Click the Add Parameter… button. Set
Parameter Name to FFE_Tap1, Current Value to 0, Usage to InOut, Type to
Float, and Format to Value. Set the Description as: Tx FFE Tap 1 for back-
channel training. Save the changes.

• BCI_Protocol: This parameter is only used to generate a parameter named
"BCI_Protocol" in the .ami file for compliance to the IBIS-AMI specification. This
parameter is not used by this model. Click the Add Parameter… button. Set
Parameter Name to BCI_Protocol, Current Value to "DDRx_Write", Usage to
Info, Type to String, and Format to Value. Set the Description as: This model
supports the DDRx Write Example back-channel protocol. NOTE: This
model does not currently support BCI_Protocol as an input to the
model. Save the changes.

• BCI_ID: This parameter is only used to generate a parameter named "BCI_ID" in
the .ami file for compliance to the IBIS-AMI specification. This parameter is not used
by this model. Click the Add Parameter… button. Set Parameter Name to BCI_ID,
Current Value to "bci_comm", Usage to Info, Type to String, and Format to
Value. Set the Description as: This model creates files with names
beginning with 'bci_comm' for back-channel communication. NOTE:
This model does not currently support BCI_ID as an input to the
model. Save the changes.

4 Industry Standard IBIS-AMI Models

4-66

• BCI_State: This parameter creates a Data Store that is used to communicate the
status of back-channel training: 1=Off, 2=Training, 3=Converged, 4=Failed, 5=Error.
Click the Add Parameter… button. Set Parameter Name to BCI_State, Usage to
InOut, Type to Integer, and Format to List. Set the Description as: Back
channel training status. Set the Default to 2, List values to [1 2 3 4 5],
and List_Tip values to ["Off" "Training" "Converged" "Failed" "Error"],
then set the Current Value to "Training". Save the changes.

Update Receiver (Rx) AMI Parameters

On the AMI-Rx tab in the SerDes IBIS-AMI manager dialog box, the reserved parameters
are listed first followed by the model-specific parameters adhering to the format of a
typical AMI file.

• Set the VGA gain: Edit Gain. Set Description as: Rx Amplifier Gain. Make sure
Format is set to List and set Default to 1. Set List values as [0.5 0.631 0.794
1 1.259 1.585 2] and List_Tip values as ["-6 dB" "-4 dB" "-2 dB" "0 dB"
"2 dB" "4 dB" "6 dB"], then set the Current Value to 0dB. Save the changes.

• Set the first DFE tap weight: Edit TapWeights 1. Make sure Format is set to Range
and set Typ = 0, Min = -0.2, and Max = 0.05. Save the changes.

• Set the second DFE tap weight: Edit TapWeights 2. Make sure Format is set to
Range and set Typ = 0, Min = -0.075, and Max = 0.075. Save the changes.

• Set the third DFE tap weight: Edit TapWeights 3. Make sure Format is set to Range
and set Typ = 0, Min = -0.06, and Max = 0.06. Save the changes.

• Set the fourth DFE tap weight: Edit TapWeights 4. Make sure Format is set to Range
and set Typ = 0, Min = -0.045, and Max = 0.045. Save the changes.

Create new Rx back-channel AMI parameters

To support back-channel operation, additional control parameters are needed. In the
AMI-Rx tab in the SerDes IBIS-AMI manager dialog, highlight Rx_BCI_Write and add
the following new parameters (Note: Rx_BCI_Read does not require any additional
parameters):

• sampleVoltage: This parameter creates a Data Store that will be used to pass the
CDR sample voltage to the other Rx blocks during training. Click the Add
Parameter… button. Set Parameter Name to sampleVoltage, Current Value to 0,
Usage to InOut, Type to Float, and Format to Value. Set the Description as:
Sample Voltage for back-channel training. Save the changes.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-67

• BCI_Protocol: This parameter only generates a parameter named "BCI_Protocol" in
the .ami file for compliance to the IBIS-AMI specification. This parameter is not be
used by this model. Click the Add Parameter… button. Set Parameter Name to
BCI_Protocol, Current Value to "DDRx_Write", Usage to Info, Type to String,
and Format to Value. Set the Description as: This model supports the DDRx
Write Example back-channel protocol. NOTE: This model does not
currently support BCI_Protocol as an input to the model. Save the
changes.

• BCI_ID: This parameter only generates a parameter named "BCI_ID" in the .ami file
for compliance to the IBIS-AMI specification. This parameter is not be used by this
model. Click the Add Parameter… button. Set Parameter Name to BCI_ID,
Current Value to "bci_comm", Usage to Info, Type to String, and Format to
Value. Set the Description as: This model creates files with names
beginning with 'bci_comm' for back-channel communication. NOTE:
This model does not currently support BCI_ID as an input to the
model. Save the changes.

• BCI_State: This parameter creates a Data Store that is used to communicate the
status of back-channel training: 1=Off, 2=Training, 3=Converged, 4=Failed, 5=Error.
Click the Add Parameter… button. Set Parameter Name to BCI_State, Usage to
InOut, Type to Integer, and Format to List. Set the Description as: Back
channel training status. Set the Default to 2, List values to [1 2 3 4 5],
and List_Tip values to ["Off" "Training" "Converged" "Failed" "Error"],
then set the Current Value to "Training". Save the changes.

• BCI_Message_Interval_UI: This parameter only generates a parameter named
"BCI_Message_Interval_UI" in the .ami file for compliance to the IBIS-AMI
specification. This parameter is not be used by this model. Click the Add Parameter…
button. Set Parameter Name to BCI_Message_Interval_UI, Current Value to 64,
Usage to Info, Type to Integer, and Format to Value. Set the Description as: BCI
requires 1024 Samples Per Bit for proper operation. Save the changes.

• BCI_Training_UI: This parameter only generates a parameter named
"BCI_Training_UI" in the .ami file for compliance to the IBIS-AMI specification. This
parameter is not be used by this model. Click the Add Parameter… button. Set
Parameter Name to BCI_Training_UI, Current Value to 100000, Usage to Info,
Type to Integer, and Format to Value. Set the Description as: BCI training
may require 100,000 UI to complete. Save the changes.

Run Refresh Init

To propagate the new AMI parameters, run Refresh Init on both the Tx and Rx blocks.

4 Industry Standard IBIS-AMI Models

4-68

• Double click the Init subsystem inside the Tx block and click the Refresh Init button.
• Double click the Init subsystem inside the Rx block and click the Refresh Init button.

Run the Model

Run the model to simulate the SerDes system and verify that the current setup compiles
and runs with no errors or warnings. Two plots are generated. The first is a live time-
domain (GetWave) eye diagram that is updated as the model is running. The second plot
contains four views of the statistical (Init) results, like the plots available in the SerDes
Designer App.

Supplied files

Three sets of external files are required to support back-channel training. The generation
of these files is beyond the scope of this example, so they are included in this example.
Download these files to the model directory (location of the Simulink .slx file) before
running the complete SerDes system or generating AMI model executables.

Write to back-channel communication files

These three files are used to write the current state of the back-channel training
parameters and eye metric(s) to an external file for communication between the Tx and
Rx AMI models.

• MATLAB function file: writeBCIfile.m
• C++ files required for codegen: writeamidata.cpp and writeamidata.h

Read from back-channel communication files

These three files are used to read the current state of the back-channel training
parameters and eye metric(s) from an external file for communication between the Tx and
Rx AMI models.

• MATLAB function file: readBCIfile.m
• C++ files required for codegen: readamidata.cpp and readamidata.h

Write to back-channel log files

These three files are used to write current state of the back-channel training parameters
and eye metric(s) after each training step to a log file for debug.

• MATLAB function file: writeBCIhistory.m

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-69

• C++ files required for codegen: writebcihist.cpp and writebcihist.h

Modify Tx FFE to enable external control of Tap values

To control the Tx FFE tap weights from the Tx_BCI block when back-channel training is
enabled, replace the FFEParameter.TapWeights Constant block with a DataStoreRead
block. This datastore allows the FFE tap values to change during the simulation and to be
passed in and out of each of the datapath blocks.

Inside the Tx subsystem, click on the FFE block and type Ctrl-U to look under the mask
of the FFE block.

1 Delete the FFETapWeights Constant block.
2 Add a DataStoreRead block labeled BCIFFETapWeightsIn.
3 Double-click on the DataStoreRead block and set the Data store name to:

Tx_BCISignal.
4 On the Element Selection tab, expand the signal Tx_BCISignal and highlight

FFE_Tapm1, FFE_Tap0 and FFE_Tap1.
5 Press the Select>> button to select these 3 elements.
6 Save the changes.

Add a Mux block and set the number of inputs to 3 to multiplex these three parameters
into a vector for the FFE block.

Connect the output of the Mux block to the TapWeights input on the FFE.

The final FFE block should look like the following:

4 Industry Standard IBIS-AMI Models

4-70

Type Ctrl-D to compile the model and check for errors.

Modify the DFECDR to output eye Sample Voltage

To determine the quality of a given set of equalization values during back-channel
training, the voltage that is sampled by the CDR at the center of the eye for each symbol
will be used. This value is captured by a DataStoreWrite block so that its value is available
to the other BCI control blocks.

Inside the Rx subsystem, click on the DFECDR block and type Ctrl-U to look under the
mask of the Rx DFECDR block.

Open the BusSelector object

1 Highlight voltageSample from the list of Signals in the bus.
2 Hit Select>> to move it to the list of Selected signals.
3 Save the changes.

Add a DataStoreWrite block labeled CDR sample Voltage

1 Double click the DataStoreWrite block and set the Data store name to:
Rx_BCI_WriteSignal.

2 On the Element Assignment tab, expand the signal Rx_BCI_WriteSignal and highlight
sampleVoltage.

3 Press the Select>> button to select this element.
4 Save the changes.

Connect the voltageSample output of the BusSelector to the input of the new
DataStoreWrite block.

This portion of the DFECDR block should look like the following:

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-71

Type Ctrl-D to compile the model and check for errors.

Modify the DFECDR to override Mode when training is enabled

During back-channel training, both the FFE and DFE Modes need to be set to "Fixed".
The FFE Mode has been hard-coded to "Fixed". A simple MATLAB function is used to
allow you to set the DFE Mode when training is not enabled.

Inside the Rx subsystem, click on the DFECDR block and type Ctrl-U to look under the
mask of the Rx DFECDR block.

Delete the connection between the DFECDRMode block and the DFECDR.

Add a new MATLAB function block and set the label to DFEModeSelect. This function
block reads the values of BCI_State and DFE.Mode and forces the DFE Mode to 1 (Fixed)
when training is enabled or completed. Copy/Paste the following code into the
DFEModeSelect MATLAB function block, replacing the default contents.

function Mode = DFEModeSelect(DFEModeIn, BCI_State_In)

if BCI_State_In == 1 % Training is Off
 Mode = DFEModeIn;

4 Industry Standard IBIS-AMI Models

4-72

else
 Mode = 1; % Force DFE Mode to Fixed for all other Training states
end

Add a DataStoreRead block labeled Rx_BCI_Write_BCI_State_In, so the value of
BCI_State can be fed into the MATLAB function block.

1 Double click the DataStoreRead block and set the Data store name to:
Rx_BCI_WriteSignal.

2 On the Element Selection tab, expand the signal Rx_BCI_WriteSignal and highlight
BCI_State.

3 Press the Select>> button to select this element.
4 Save the changes.

Wire up these new blocks as shown. The final DFECDR block should look like the
following:

Type Ctrl-D to compile the model and check for errors.

Set up the Tx Init Custom Code

The Tx Initialize function is used to set up the Tx AMI model for running back-channel
training during GetWave analysis. This creates the back-channel communication and log
files, sets up the various parameters and overrides any user defined FFE tap values.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-73

Inside the Tx subsystem, type Ctrl-U to look under the mask for the Init block, then
double click on the initialize block to open the Initialize Function.

Double click on the impulseEqualization MATLAB function block to open the function in
MATLAB. This is an automatically generated function which provides the impulse
response processing of the SerDes system block (IBIS AMI-Init). The %% BEGIN: and %
END: lines denote the section where custom user code can be entered. Data in this
section is not over-written when Refresh Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
Tx_BCIBCI_State = Tx_BCIParameter.BCI_State; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tap0 = Tx_BCIParameter.FFE_Tap0; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tap1 = Tx_BCIParameter.FFE_Tap1; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tapm1 = Tx_BCIParameter.FFE_Tapm1; % User added AMI parameter from SerDes IBIS-AMI Manager

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

4 Industry Standard IBIS-AMI Models

4-74

Use this custom user code area to initialize the back-channel parameters, write the first
entry in the back-channel communication file "BCI_comm.csv" and create the back-
channel log file "BCI_comm_log.csv". To add the custom back-channel control code, scroll
down to the custom user code area and Copy/Paste the following code:

Tx_BCIBCI_State = Tx_BCIParameter.BCI_State; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tap0 = Tx_BCIParameter.FFE_Tap0; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tap1 = Tx_BCIParameter.FFE_Tap1; % User added AMI parameter from SerDes IBIS-AMI Manager
Tx_BCIFFE_Tapm1 = Tx_BCIParameter.FFE_Tapm1; % User added AMI parameter from SerDes IBIS-AMI Manager

%% Set up for GetWave back-channel operation
if Tx_BCIBCI_State == 2 % Training enabled
 bciWrFile = 'BCI_comm.csv'; %% Tx/Rx back-channel communication file
 Protocol = ['DDR5' 0]; %% Null terminate string to keep fprintf happy in C++
 State = ['Training' 0]; %% Null terminate string to keep fprintf happy in C++
 Sequence = 1; %% Initialize sequence counter
 EyeHeight = 0.0; %% Initialize training metric
 % Publish Tx capabilities
 numFFEtaps = 3;
 FFEtaps = [0.0, 1.0, 0.0];
 FFEInit.TapWeights = [0.0, 1.0, 0.0];
 % Initialize Rx capabilities (actual values set by Rx)
 numDFEtaps = 1;
 DFEtaps = 0.0000;

 % Create new file for back-channel communication
 writeBCIfile(bciWrFile, 'w', Protocol, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, State, EyeHeight)

 % Create new BCI_ID_log.csv file (for back-channel history)
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Tx', 'Init', 0, Tx_BCIBCI_State, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, EyeHeight)

end

To test that the new user code is working correctly, run the model, verify that the new
back-channel communication (BCI_comm.csv) and log (BCI_comm_log.csv) files have been
created and that the values in the files match the values set above.

Set up the Rx Init Custom Code

The Rx Initialize function is used to set up the Rx AMI model for running back-channel
training during GetWave analysis. This reads in the back-channel communication file and
then updates the file with the Rx configuration information (number of DFE taps and DFE
tap values). It also updates the log file.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-75

Inside the Rx subsystem type Ctrl-U to look under the mask for the Init block, then
double click on the initialize block to open the Initialize Function.

Double-click on the impulseEqualization MATLAB function block to open the function in
MATLAB. This is an automatically generated function which provides the impulse
response processing of the SerDes system block (IBIS AMI-Init). The %% BEGIN: and %
END: lines denote the section where custom user code can be entered. Data in this
section is not over-written when Refresh Init is run:

%% BEGIN: Custom user code area (retained when 'Refresh Init' button is pressed)
Rx_BCI_WritesampleVoltage = Rx_BCI_WriteParameter.sampleVoltage; % User added AMI parameter from SerDes IBIS-AMI Manager
Rx_BCI_WriteBCI_State = Rx_BCI_WriteParameter.BCI_State; % User added AMI parameter from SerDes IBIS-AMI Manager

% END: Custom user code area (retained when 'Refresh Init' button is pressed)

Use this custom user code area to read the configuration from the Tx, initialize the
additional back-channel parameters required by the Rx, write the next entry in the back-
channel communication file "BCI_comm.csv", and append to the back-channel log file

4 Industry Standard IBIS-AMI Models

4-76

"BCI_comm_log.csv". To add the custom back-channel control code, scroll down the
custom user code area and Copy/Paste the following code:

Rx_BCI_WritesampleVoltage = Rx_BCI_WriteParameter.sampleVoltage; % User added AMI parameter from SerDes IBIS-AMI Manager
Rx_BCI_WriteBCI_State = Rx_BCI_WriteParameter.BCI_State; % User added AMI parameter from SerDes IBIS-AMI Manager

%% Set up for GetWave back-channel operation
if Rx_BCI_WriteBCI_State == 2 % Training enabled
 %% Read from back-channel communication file to get setup from Tx
 bciRdFile = 'BCI_comm.csv';
 [Protocol, ~, numFFEtaps, ~, FFEtaps, Sequence, State, EyeHeight] = readBCIfile(bciRdFile);

 %% Write Rx setup to back-channel communication file.
 bciWrFile = 'BCI_comm.csv';
 Sequence = Sequence + 1; %% Initialize sequence counter
 % Publish Rx capabilities
 numDFEtaps = 4;
 DFEtaps = [0.0000, 0.0000, 0.0000, 0.0000];

 writeBCIfile(bciWrFile, 'w', Protocol, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, State, EyeHeight)

 % Write to log file
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Rx', 'Init', 0, Rx_BCI_WriteBCI_State, numDFEtaps, numFFEtaps, DFEtaps, FFEtaps, Sequence, EyeHeight)

 % Force DFE Mode to Fixed when training is enabled.
 DFECDRInit.Mode = 1;

end

To test that the new user code is working correctly, run the model, verify that the back-
channel communication (BCI_comm.csv) and log (BCI_comm_log.csv) files have been
created and that the values in the files match the values set above.

Set up the Tx Tx_BCI pass-through block

The Tx_BCI block is used to control the entire back-channel training process. The first
time through it initializes all the Tx and Rx parameters that will be optimized during
training. After every back-channel training cycle this block will read the current eye
metric supplied by the Rx, store this value, then update the Tx and Rx parameters for the
next pass. When training is complete this block will signal completion of training, set all
Tx and Rx parameters to their optimal values and then return the models to regular
operation.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-77

The first step is to set up the Tx_BCI block for back-channel operation. The MATLAB
function block that controls the operation of the Tx_BCI block is written later in this
example.

Look under the mask in the Tx_BCI block.

Delete the Pass-Through system object since it is not used. Be sure to connect the Inport
to the Outport.

Add a Constant block labeled FFETapWeights and set the constant value to
FFEParameter.TapWeights.

• Double click the Constant block to open the mask.
• Uncheck the Interpret vector parameters as 1-D check-box to prevent the incoming

Tap Weights row vector from being converted to a column vector.

Add a DataStoreRead block labeled TxBCIStateIn

1 Double click the DataStoreRead block and set the Data store name to
Tx_BCISignal.

2 On the Element Selection tab, expand the signal Tx_BCISignal and highlight
BCI_State.

3 Press the Select>> button to select this element.
4 Save the changes.

Add a DataStoreWrite block labeled BCIFFETapWeightsOut

1 Double click on the DataStoreWrite block and set the Data store name to
Tx_BCISignal.

2 On the Element Assignment tab, expand the signal Tx_BCISignal and highlight
FFE_Tapm1, FFE_Tap0 and FFE_Tap1

3 Press the Select>> button to select these elements.
4 Save the changes.

Add a DataStoreWrite block labeled TxBCIStateOut

1 Double click the DataStoreWrite block and set the Data store name to:
Tx_BCISignal.

2 On the Element Assignment tab, expand the signal Tx_BCISignal and highlight
BCI_State.

4 Industry Standard IBIS-AMI Models

4-78

3 Press the Select>> button to select this element.
4 Save the changes.

Add a Demux block and set the number of outputs to 3 to demultiplex the tapWeightsOut
vector into three separate signals.

Add a new MATLAB function block and set the label to Counter. This MATLAB function
returns a count of the total number of samples processed by the model and the resulting
number of UI. Open this new MATLAB function block then Copy/Paste the following code,
replacing the default contents.

function [sampCount, uiCount] = counter(SymbolTime, SampleInterval)

% Calculate Samples Per Bit
sampBit = round(SymbolTime/SampleInterval);

% Set up persistant variables
persistent x y
if isempty(x)
 x = int32(1);
 y = int32(1);
else
 x = x + 1;
end

% Start counting by UI
if mod(x,sampBit) == 0
 y = y + 1;
end

% Output results
sampCount = x;
uiCount = y;

The values for two of the inputs to this function, SymbolTime and SampleInterval, are
inherited from the Model Workspace and therefore do not need to show up as nodes on
the MATLAB function block. To remove these nodes from the MATLAB function block:

1 Save the MATLAB function.
2 Open the Model Explorer and navigate to Tx->Tx_BCI->Counter.
3 Highlight the parameter SymbolTime.
4 Update the Scope from Input to Parameter and click Apply.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-79

5 Repeat this process for SampleInterval.

The Data Type for the outputs of this function, sampCount and uiCount, are set to
Inherit by default. Since this function block is creating the values for these two
parameters their Data Type needs to be explicitly defined instead of determined based on
heuristics. To explicitly define the Data Types for these two parameters:

1 Open the Model Explorer and navigate to Tx->Tx_BCI->Counter.
2 Highlight the parameter sampCount.
3 Update the Type from Inherit to int32 and click Apply.
4 Repeat this process for uiCount.

Add another new MATLAB function block and set the label to txBackChannel. This
MATLAB function block is used to control the back-channel training process. The contents
of this function is covered later in this example. However, to complete the Tx_BCI block
connections you must display all the correct nodes. To enable this:

1 Double click the txBackChannel MATLAB function block to open in the MATLAB
editor.

2 Delete all the default contents.
3 Insert the following function signature:

function [tapWeightsOut, BCIStateOut] = txBCtraining(tapWeightsIn, BCIStateIn, sampleCounter, uiCounter, SymbolTime, SampleInterval)

The values for two of the inputs to this function, SymbolTime and SampleInterval, are
inherited from the Model Workspace and therefore do not need to show up as nodes on
the MATLAB function block. To remove these nodes from the MATLAB function block:

1 Save the MATLAB function.
2 Highlight the parameter SymbolTime.
3 Right-click on the parameter and select Data Scope for "SymbolTime".
4 Set the value to Parameter.
5 Repeat this process for SampleInterval.

Connect everything together as shown below:

4 Industry Standard IBIS-AMI Models

4-80

Set up the Rx Rx_BCI_Read block

The Rx_BCI_Read block is used to read the Rx parameters values requested by the Tx_BCI
block and set those values for the next back-channel training cycle. If the Tx_BCI block
signals that training is complete, this block sets the final values to be used for the
remainder of the simulation.

The first step is to set up the Rx_BCI_Read block for back-channel operation. The
MATLAB function block that controls the operation of the Rx_BCI_Read block is written
later in the example.

Look under the mask in the Rx_BCI_Read block.

Delete the Pass-Through system object since it will not be used. Be sure to connect the
Inport to the Outport.

Add a DataStoreRead block labeled DFECDRTapWeightsIn

1 Double click the DataStoreRead block and set the Data store name to:
DFECDRSignal.

2 On the Element Selection tab, expand the signal DFECDRSignal and highlight
TapWeights [1,4].

3 Press the Select>> button to select this element.
4 Save the changes.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-81

Add a DataStoreRead block labeled RxBCIStateIn

1 Double click the DataStoreRead block and set the Data store name to:
Rx_BCI_WriteSignal.

2 On the Element Selection tab, expand the signal Rx_BCI_WriteSignal and highlight
BCI_State.

3 Press the Select>> button to select this element.
4 Save the changes.

Add a DataStoreWrite block labeled RxBCIStateOut

1 Double click the DataStoreWrite block and set the Data store name to:
Rx_BCI_WriteSignal.

2 On the Element Assignment tab, expand the signal Rx_BCI_WriteSignal and highlight
BCI_State.

3 Press the Select>> button to select this element.
4 Save the changes.

Add a DataStoreWrite block labeled DFECDRTapWeightsOut

1 Double-click on the DataStoreWrite block and set the Data store name to:
DFECDRSignal.

2 On the Element Assignment tab, expand the signal DFECDRSignal and highlight
TapWeights [1,4].

3 Press the Select>> button to select this element.
4 Save the changes.

Copy the Counter MATLAB function block from the Tx Tx_BCI block into this block.

Add a new MATLAB function block and set the label to rxBackChannelRead. This
MATLAB function block is used to control the back-channel training process. The contents
of this function is covered later in this example. However, to complete the Rx_BCI_Read
block connections you must display all the correct nodes. To enable this:

1 Double click the rxBackChannelRead MATLAB function block to open in the MATLAB
editor.

2 Delete all the default contents.
3 Insert the following function signature:

4 Industry Standard IBIS-AMI Models

4-82

function [BCIStateOut, tapWeightsOut] = rxBCtrainingRead(tapWeightsIn, BCIStateIn, sampleCounter, uiCounter, SymbolTime, SampleInterval)

The values for two of the inputs to this function, SymbolTime and SampleInterval, are
inherited from the Model Workspace and therefore do not need to show up as nodes on
the MATLAB function block. To remove these nodes from the MATLAB function block:

1 Save the MATLAB function block.
2 Highlight the parameter SymbolTime.
3 Right-click on the parameter and select Data Scope for "SymbolTime".
4 Set the value to Parameter.
5 Repeat this process for SampleInterval.

Connect everything together as shown below:

Set up the Rx Rx_BCI_Write block

The Rx_BCI_Write block is used at the end of each back-channel training cycle to
calculate the current eye metrics and report those metrics back to the Tx_BCI block for
analysis.

The first step is to set up the Rx_BCI_Write block for back-channel operation. The
MATLAB function block that controls the operation of the Rx_BCI_Write block is written
later in the example.

Look under the mask in the Rx_BCI_Write block.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-83

Delete the Pass-Through system object since it is not used. Be sure to connect the Inport
to the Outport.

Add a DataStoreRead block labeled CDRSampleVoltageIn.

1 Double click the DataStoreRead block and set the Data store name to:
Rx_BCI_WriteSignal.

2 On the Element Selection tab, expand the signal Rx_BCI_WriteSignal and highlight
sampleVoltage.

3 Press the Select>> button to select this element.
4 Save the changes.

Add a DataStoreRead block labeled DFECDRTapWeightsIn.

1 Double-click on the DataStoreRead block and set the Data store name to
DFECDRSignal.

2 On the Element Selection tab, expand the signal DFECDRSignal and highlight
TapWeights [1,4].

3 Press the Select>> button to select this element.
4 Save the changes.

Add a DataStoreRead block labeled RxBCIStateIn

1 Double click the DataStoreRead block and set the Data store name to:
Rx_BCI_WriteSignal

2 On the Element Selection tab, expand the signal Rx_BCI_WriteSignal and highlight
BCI_State

3 Press the Select>> button to select this element
4 Press OK to close the DataStoreRead dialog.

Add a DataStoreWrite block labeled RxBCIStateOut

1 Double click the DataStoreWrite block and set the Data store name to:
Rx_BCI_WriteSignal.

2 On the Element Assignment tab, expand the signal Rx_BCI_WriteSignal and highlight
BCI_State.

3 Press the Select>> button to select this element.

4 Industry Standard IBIS-AMI Models

4-84

4 Save the changes.

Copy the Counter MATLAB function block from the Tx Tx_BCI block into this block.

Add a new MATLAB function block and set the label to rxBackChannelWrite. This
MATLAB function block is used to control the back-channel training process. The contents
of this function is covered later in this example. However, to complete the Rx_BCI_Write
block connections you must display all the correct nodes. To enable this:

1 Double click the rxBackChannelWrite MATLAB function block to open in the MATLAB
editor.

2 Delete all the default contents.
3 Insert the following function signature:

function BCIStateOut = rxBCtrainingWrite(sampleV, tapWeightsIn, BCIStateIn, sampleCounter, uiCounter, SymbolTime, SampleInterval)

The values for two of the inputs to this function, SymbolTime and SampleInterval, are
inherited from the Model Workspace and therefore do not need to show up as nodes on
the MATLAB function block. To remove these nodes from the MATLAB function block:

1 Save the MATLAB function block.
2 Highlight the parameter SymbolTime.
3 Right click on the parameter and select Data Scope for "SymbolTime".
4 Set the value to Parameter.
5 Repeat this process for SampleInterval.

Connect everything together as shown below:

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-85

Edit the txBCtraining MATLAB function block

The Tx_BCI block is used to control the entire back-channel training process. The first
time through it initializes all the Tx and Rx parameters that will be optimized during
training. After every back-channel training cycle, this block reads the current eye metric
supplied by the Rx, stores this value, then updates the Tx and Rx parameters for the next
pass. When training is complete this block signals completion of training, sets all Tx and
Rx parameters to their optimal values and then returns the models to regular operation.

The Tx_BCI block was set up for back-channel operation earlier in this example. Now
create the MATLAB function block at the heart of the Tx_BCI block. This MATLAB
function block, which was labeled txBackChannel, controls the entire back-channel
training process. The steps involved in this process are as follows:

1 Define the function signature
2 Initialize parameters and set persistent variables
3 Define the parameters to be swept and their ranges
4 On the first GetWave call, set up the initial starting parameter values for the Tx and

the Rx
5 Every back-channel training cycle read the eye metrics calculated by the Rx and

decide what to do next. When training is complete signal the completion of training,

4 Industry Standard IBIS-AMI Models

4-86

output the optimal Tx and Rx parameter values to be used during simulation and
write these final values to the log file.

6 Set to proper training state and output the FFE parameters to be used

The following sections walks you through the code used in the txBackChannel MATLAB
function block. In the Tx block, click on the Tx_BCI pass-through block and type Ctrl-U to
push into the Tx_BCI pass-through block set up earlier. Double-click on the
txBackChannel MATLAB function block, then Copy/Paste the code described in the
following sections.

Define the function signature

The function signature for the txBCtraining block has 6 inputs and 2 outputs. The inputs
are:

• tapWeightsIn: The FFE tap weights array as defined in the FFE mask.
• BCIStateIn: The back-channel state value from the TxBCIStateIn Data Store.
• sampleCounter: Count of total number of samples.
• uiCounter: Count of total number of UI.
• SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace

and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to
"Parameter".

• SampleInterval: Simulation step size (in seconds). This value is inherited from the
Model Workspace and therefore does not need to show up as a node on the MATLAB
function block. To remove this node from the MATLAB function block, the Data Scope
has been set to "Parameter".

There are two outputs:

• tapWeightsOut: The FFE tap weights array output to the BCIFFETapWeightsOut Data
Store.

• BCIStateOut: The back-channel state value output to the TxBCIStateOut Data Store.

The function signature was entered when initially creating the MATLAB function block
and so is already present.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-87

Initialize parameters and variables

This section sets up the three constants needed for calculating the size of the back-
channel training cycle:

• sampBit: The number of samples in each UI.
• messageInterval: The length (in UI) of each back-channel training cycle. This value is

currently set to ~2 PRBS7 iterations.
• BCIwait: The delay time (in UI) before starting back-channel training. This value is

currently set to ~4 PRBS7 iterations.

In addition to the constant values, this section sets up the 11 persistent variables used by
this function. Persistent variables retain their values between each call to this MATLAB
function. The 11 persistent variables are:

• Protocol: The protocol being used by this back-channel model.
• numDFEtaps: The number of DFE taps being included in this back-channel training

algorithm.
• numFFEtaps: The number FFE taps being included in this back-channel training

algorithm.
• DFEtaps: The current DFE tap values.
• FFEtaps: The current FFE tap values.
• Sequence: A integer counter used to log the sequence of training events.
• State: The current back-channel training state.
• EyeHeight: The current eye height (in Volts) being reported by the Rx.
• step: The current training sequence step being run.
• indx: An index variable for control loops.
• metric: An array used to store the incoming eye heights from each training step.

To initialize these parameters and variables, Copy/Paste the following code into the
txBackChannel MATLAB function block:

%% Setup
sampBit = round(SymbolTime/SampleInterval); %% Calculate Samples Per Bit
messageInterval = 256; %% Length (in UI) of back-channel training cycle iteration (~2 PRBS7 iterations)
BCIwait = 512; %% Delay time (in UI) before starting training(~4 PRBS7 iterations)

%% Read BCI file to determine training values

4 Industry Standard IBIS-AMI Models

4-88

% Make variables available between time steps
persistent Protocol numDFEtaps numFFEtaps DFEtaps FFEtaps Sequence State EyeHeight step indx metric

% Initialize variable initial conditions
if isempty(Protocol)
 Protocol = 'Defaults';
end
if isempty(numDFEtaps)
 numDFEtaps = 4;
end
if isempty(numFFEtaps)
 numFFEtaps = 3;
end
if isempty(DFEtaps)
 DFEtaps = [0.000,0.000,0.000,0.000];
end
if isempty(FFEtaps)
 FFEtaps = [0.000,1.000,0.000];
end
if isempty(Sequence)
 Sequence = 1;
end
if isempty(State)
 State = 'Testing';
end
if isempty(EyeHeight)
 EyeHeight = 0.000;
end
if isempty(step)
 step = 1;
end
if isempty(indx)
 indx = 1;
end
if isempty(metric)
 metric = zeros(50,1);
end

Define swept parameters

The training algorithm implemented in this example sweeps the pre and post FFE tap
values and all 4 of the DFE taps individually, then selects the optimal value for each tap.
Eight parameters are used to define the ranges for each of the taps and the step size to
be used during training:

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-89

• ffeTapStep: The step size to be used when sweeping the FFE taps. This value is
negative since the FFE tap values are always <= 0.

• dfeTapStep: The step size to be used when sweeping the DFE taps.
• regFFEtapm1: The min/max range of values to be used when sweeping the FFE pre-

tap.
• regFFEtap1: The min/max range of values to be used when sweeping the FFE post-

tap.
• regDFEtap1: The min/max range of values to be used when sweeping the first DFE

tap.
• regDFEtap2: The min/max range of values to be used when sweeping the second DFE

tap.
• regDFEtap3: The min/max range of values to be used when sweeping the third DFE

tap.
• regDFEtap4: The min/max range of values to be used when sweeping the fourth DFE

tap.

To define all the parameters to be swept during training, Copy/Paste the following code
into the txBackChannel MATLAB function block:

% Define parameter step sizes
ffeTapStep = -0.050;
dfeTapStep = 0.010;

% Map ranges to register values
regFFEtapm1 = (0.000:ffeTapStep:-0.300);
regFFEtap1 = (0.000:ffeTapStep:-0.300);
regDFEtap1 = (-0.200:dfeTapStep: 0.050);
regDFEtap2 = (-0.075:dfeTapStep: 0.075);
regDFEtap3 = (-0.060:dfeTapStep: 0.060);
regDFEtap4 = (-0.045:dfeTapStep: 0.045);

First GetWave call

When training is enabled, the very first call to this MATLAB function needs to read the
back-channel communication file written during Init to determine the full capabilities of
the Tx and Rx models. This section also sets up the initial values to be used for the first
back-channel training cycle. Finally, all these values are written to the back-channel
communication log file.

4 Industry Standard IBIS-AMI Models

4-90

To implement the first GetWave call, Copy/Paste the following code into the
txBackChannel MATLAB function block:

%% First Tx GetWave Call (Sequence=3)
if sampleCounter == 1 && BCIStateIn == 2 % Training enabled
 % Read back-channel communication file to get current settings
 bciRdFile = 'BCI_comm.csv';
 [~, numDFEtaps, numFFEtaps, ~, ~, Sequence, ~, EyeHeight] = readBCIfile(bciRdFile);

 % Decide what to do first
 % Tx Params
 FFEtaps = [0.000,1.000,0.000];
 % Rx Params
 DFEtaps = [0.0000, 0.0000, 0.0000, 0.0000];

 % Write back-channel communication file with first pass settings for Rx
 bciWrFile = 'BCI_comm.csv';
 Protocol = ['DDR5' 0]; %% Null terminate string to keep fprintf happy in C++
 State = ['Training' 0]; %% Null terminate string to keep fprintf happy in C++
 Sequence = Sequence + 1;
 writeBCIfile(bciWrFile, 'w', Protocol, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, State, EyeHeight)

 % Write to log file
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, BCIStateIn, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, EyeHeight)
end

Back-channel training algorithm

When training is enabled, after waiting the number of UI as defined by the constant
BCIwait, the back-channel training algorithm is called every training block as defined by
the messageInterval constant. First the current metrics reported by the Rx are read,
then those results are written to the back-channel communication log file. The training
algorithm uses the following steps:

1 Sweep all values of the FFE pre-tap and determine which value results in the largest
eye opening.

2 Sweep all values of the FFE post-tap and determine which value results in the largest
eye opening.

3 Sweep all values of DFE tap 1 and determine which value results in the largest eye
opening.

4 Sweep all values of DFE tap 2 and determine which value results in the largest eye
opening.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-91

5 Sweep all values of DFE tap 3 and determine which value results in the largest eye
opening.

6 Sweep all values of DFE tap 4 and determine which value results in the largest eye
opening.

7 When training is complete, change the State to "Converged" and write the final
values to the back-channel communication log file.

To implement the back-channel training algorithm, Copy/Paste the following code into the
txBackChannel MATLAB function block:

%% Each subsequent BCI Block (Sequence=5,7,9,11...)
if uiCounter > BCIwait + 2 && mod(sampleCounter - 1, (messageInterval * sampBit)) == 0 && BCIStateIn == 2 % Training enabled
 % Read setup used for previous 16 GetWaveblocks from back-channel communication file
 bciRdFile = 'BCI_comm.csv';
 [~, ~, ~, ~, ~, Sequence, ~, EyeHeight] = readBCIfile(bciRdFile);

 % Write current results to log file
 Sequence = Sequence + 1;
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, BCIStateIn, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, EyeHeight)
 if indx ~= 1
 % Store current metrics
 metric(indx - 1) = EyeHeight;
 end

 % Decide what to do next
 switch step
 case 1 % Step 1: Determine best value for FFE tap -1
 State = ['Training' 0]; %% Null terminate string to keep fprintf happy in C++
 if indx <= length(regFFEtapm1)
 % Set values for next iteration
 FFEtaps(1) = regFFEtapm1(indx);
 FFEtaps(3) = 0.0;
 FFEtaps(2) = 1 - abs(FFEtaps(1)) - abs(FFEtaps(3));
 indx = indx + 1;
 elseif indx == length(regFFEtapm1) + 1
 % Set best metric
 [~, jj] = max(metric);
 FFEtaps(1) = regFFEtapm1(jj);
 FFEtaps(3) = 0.0;
 FFEtaps(2) = 1 - abs(FFEtaps(1)) - abs(FFEtaps(3));

 % Done. Set up for next step

4 Industry Standard IBIS-AMI Models

4-92

 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 2 % Step 2: Determine best value for FFE tap 1
 State = ['Training' 0];
 if indx <= length(regFFEtap1)
 % Set values for next iteration
 %FFEtaps(1) = 0.0; %% Use value from step 1
 FFEtaps(3) = regFFEtap1(indx);
 FFEtaps(2) = 1 - abs(FFEtaps(1)) - abs(FFEtaps(3));
 indx = indx + 1;
 elseif indx == length(regFFEtap1) + 1
 % Set best metric
 [~, jj] = max(metric);
 FFEtaps(3) = regFFEtap1(jj);
 FFEtaps(2) = 1 - abs(FFEtaps(1)) - abs(FFEtaps(3));

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 3 % Step 3: Determine best value for DFE tap 1
 State = ['Training' 0];
 if indx <= length(regDFEtap1)
 % Set values for next iteration
 DFEtaps = [regDFEtap1(indx), 0.0000, 0.0000, 0.0000];
 indx = indx + 1;
 elseif indx == length(regDFEtap1) + 1
 % Set best metric
 [~, jj] = max(metric);
 DFEtaps = [regDFEtap1(jj), 0.0000, 0.0000, 0.0000];

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 4 % Step 4: Determine best value for DFE tap 2
 State = ['Training' 0];
 if indx <= length(regDFEtap2)
 % Set values for next iteration
 DFEtaps(2:4) = [regDFEtap2(indx), 0.0000, 0.0000];

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-93

 indx = indx + 1;
 elseif indx == length(regDFEtap2) + 1
 % Set best metric
 [~, jj] = max(metric);
 DFEtaps(2:4) = [regDFEtap2(jj), 0.0000, 0.0000];

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 5 % Step 5: Determine best value for DFE tap 3
 State = ['Training' 0];
 if indx <= length(regDFEtap3)
 % Set values for next iteration
 DFEtaps(3:4) = [regDFEtap3(indx), 0.0000];
 indx = indx + 1;
 elseif indx == length(regDFEtap3) + 1
 % Set best metric
 [~, jj] = max(metric);
 DFEtaps(3:4) = [regDFEtap3(jj), 0.0000];

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 6 % Step 6: Determine best value for DFE tap 4
 State = ['Training' 0];
 if indx <= length(regDFEtap4)
 % Set values for next iteration
 DFEtaps(4) = regDFEtap4(indx);
 indx = indx + 1;
 elseif indx == length(regDFEtap4) + 1
 % Set best metric
 [~, jj] = max(metric);
 DFEtaps(4) = regDFEtap4(jj);

 % Done. Set up for next step
 metric = zeros(50,1);
 step = step + 1;
 indx = 1;
 end
 case 7 % Step 7: Training is complete

4 Industry Standard IBIS-AMI Models

4-94

 State = ['Converged' 0];
 % Write final entry in log file
 logFileName = 'BCI_comm_log.csv';
 Sequence = Sequence + 1;
 writeBCIhistory(logFileName, 'Tx', 'GetW', sampleCounter, 3, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, EyeHeight)
 otherwise
 State = ['Error' 0];
 end

 % Write to back-channel communication file with next pass settings for Rx
 bciWrFile = 'BCI_comm.csv';
 Protocol = ['DDR5' 0]; %% Null terminate string to keep fprintf happy in C++
 writeBCIfile(bciWrFile, 'w', Protocol, numel(DFEtaps), numel(FFEtaps), DFEtaps, FFEtaps, Sequence, State, EyeHeight)

end

Set training State and output parameter values

The last thing that needs to be done in by this MATLAB function is to update the State for
the BCI_State Data Store and to update the FFE tap array values.

To set the training state and output values, Copy/Paste the following code into the
txBackChannel MATLAB function block:

%% Set back-channel state
if strcmpi(State,'Off') || strcmpi(State,['Off' 0])
 BCIStateOut = 1;
elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
 BCIStateOut = 2;
elseif strcmpi(State,'Converged') || strcmpi(State,['Converged' 0])
 BCIStateOut = 3;
elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 0])
 BCIStateOut = 4;
else %Error
 BCIStateOut = 5;
end

%% Set output FFE values based on Training
if BCIStateOut == 2 || BCIStateOut == 3 % Training enabled/Converged
 tapWeightsOut = FFEtaps(1,1:3);
else % Training Off/Failed/Error
 tapWeightsOut = tapWeightsIn;
end

Save and close this MATLAB function block.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-95

Edit the rxBCtrainingRead MATLAB function block

The Rx_BCI_Read block is used to read the Rx parameters values requested by the Tx_BCI
block and set them for the next back-channel training cycle. If the Tx_BCI block signals
that the training is complete, this block sets the final values to be used by the Rx for the
remainder of the simulation.

The Rx_BCI_Read block was set up for back-channel operation earlier in this example.
Now create the MATLAB function block at the center of the Rx_BCI_Read block. This
MATLAB function block, which was labeled rxBCtrainingRead, sets the Rx DFE values
to be used. The steps involved in this process are as follows:

1 Define the function signature.
2 Initialize parameters and set persistent variables.
3 On the first GetWave call, and at the beginning of every back-channel training cycle,

read the Rx DFE tap values to be used as specified by the Tx back-channel training
algorithm.

4 Set the proper training state and output the DFE parameters to be used.

The following sections walk you through the code used in the rxBCtrainingRead MATLAB
function block. In the Rx block, click on the Rx_BCI_Read pass-through block and type
Ctrl-U to push into the Rx_BCI_Read pass-through block set up earlier. Double click the
rxBCtrainingRead MATLAB function block, then Copy/Paste the code described in the
following sections.

Define the function signature

The function signature for the rxBCtrainingRead block has 6 inputs and 2 outputs. The
inputs are:

• tapWeightsIn: The DFE tap weights array as defined in the DFECDRTapWeightsIn
Data Store.

• BCIStateIn: The back-channel state value from the RxBCIStateIn Data Store.
• sampleCounter: Count of total number of samples.
• uiCounter: Count of total number of UI.
• SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace

and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to
"Parameter".

4 Industry Standard IBIS-AMI Models

4-96

• SampleInterval: Simulation step size (in seconds). This value is inherited from the
Model Workspace and therefore does not need to show up as a node on the MATLAB
function block. To remove this node from the MATLAB function block, the Data Scope
has been set to "Parameter".

There are two outputs:

• tapWeightsOut: The DFE tap weights array output to the DFECDRTapWeightsOut
Data Store.

• BCIStateOut: The back-channel state value output to the RxBCIStateOut Data Store.

The function signature was entered when initially creating the MATLAB function block
and so is already present.

Initialize parameters and variables

This section sets up the three constants needed for calculating the size of the back-
channel training cycle:

• sampBit: The number of samples in each UI.
• messageInterval: The length (in UI) of each back-channel training cycle. This value is

currently set to ~2 PRBS7 iterations.
• BCIwait: The delay time (in UI) before starting back-channel training. This value is

currently set to ~4 PRBS7 iterations.

In addition to the constant values, this section sets up the 7 persistent variables used by
this function. Persistent variables retain their values between each call to this MATLAB
function. The 7 persistent variables are:

• Protocol: The protocol being used by this back-channel model.
• numDFEtaps: The number of DFE taps being included in this back-channel training

algorithm.
• numFFEtaps: The number FFE taps being included in this back-channel training

algorithm.
• DFEtaps: The current DFE tap values.
• FFEtaps: The current FFE tap values.
• Sequence: A integer counter used to log the sequence of training events.
• State: The current back-channel training state.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-97

To initialize the parameters and variables, Copy/Paste the following code into the
rxBCtrainingRead MATLAB function block:

%% Setup
sampBit = round(SymbolTime/SampleInterval); %% Calculate Samples Per Bit
messageInterval = 256; %% Length (in UI) of back-channel training cycle iteration (~2 PRBS7 iterations)
BCIwait = 512; %% Delay time (in UI) before starting training(~4 PRBS7 iterations)

% Make variables available between time steps
persistent Protocol numDFEtaps numFFEtaps DFEtaps FFEtaps Sequence State;

% Initialize variable initial conditions
if isempty(Protocol)
 Protocol = 'Defaults';
end
if isempty(numDFEtaps)
 numDFEtaps = 4;
end
if isempty(numFFEtaps)
 numFFEtaps = 3;
end
if isempty(DFEtaps)
 DFEtaps = tapWeightsIn;
end
if isempty(FFEtaps)
 FFEtaps = [0,0,0];
end
if isempty(Sequence)
 Sequence = 1;
end
if isempty(State)
 if BCIStateIn == 1 % Off
 State = ['Off' 0];
 elseif BCIStateIn == 2 % Training
 State = ['Training' 0];
 elseif BCIStateIn == 3 % Converged
 State = ['Converged' 0];
 elseif BCIStateIn == 4 % Failed
 State = ['Failed' 0];
 else % Error
 State = ['Error' 0];
 end
end

4 Industry Standard IBIS-AMI Models

4-98

Read DFE tap values to be used

When training is enabled, on the very first call to this MATLAB function and at the
beginning of every training block as defined by the messageInterval constant, the back-
channel communication file is read to determine the updated DFE tap values to be used
for the next training cycle.

To set up the DFE tap values to be used, Copy/Paste the following code into the
rxBCtrainingRead MATLAB function block:

%% First GetWave block of each BCI Block (Sequence=3,5,7,9,11,...)
% Read back-channel communication file to get current settings
if (sampleCounter == 1 && BCIStateIn == 2) || ((uiCounter > BCIwait + 2 && mod(sampleCounter - 1, (messageInterval * sampBit)) == 0) && BCIStateIn == 2) % Training enabled
 bciRdFile = 'BCI_comm.csv';
 [Protocol, numDFEtaps, numFFEtaps, DFEtaps(1,1:4), FFEtaps, Sequence, State, ~] = readBCIfile(bciRdFile);

end

Set training State and output parameter values

The last thing that needs to be done in by this MATLAB function block is to update the
State for the BCI_State Data Store and to update the DFE tap array values.

To set the State and output values, Copy/Paste the following code into the
rxBCtrainingRead MATLAB function block:

%% Set back-channel state
if strcmpi(State,'Off') || strcmpi(State,['Off' 0])
 BCIStateOut = 1;
elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
 BCIStateOut = 2;
elseif strcmpi(State,'Converged') || strcmpi(State,['Converged' 0])
 BCIStateOut = 3;
elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 0])
 BCIStateOut = 4;
else %Error
 BCIStateOut = 5;
end

%% Set output DFE values based on Training
if BCIStateOut == 2 % Training enabled
 tapWeightsOut = DFEtaps(1,1:4);
else
 tapWeightsOut = tapWeightsIn;
end

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-99

Save and close this MATLAB function block.

Edit the rxBCtrainingWrite MATLAB function block

The Rx_BCI_Write block is used at the end of each back-channel training cycle to
calculate the current eye metrics and report those metrics back to the Tx_BCI block for
analysis.

The Rx_BCI_Write block was set up for back-channel operation earlier in this example.
Now the MATLAB function block at the center of the Rx_BCI_Write block will be created.
This MATLAB function block, which we labeled rxBCtrainingWrite, will calculate the
minimum eye height of the last 127 bits and write those values to the back-channel
communication file and log file. The steps involved in this process are as follows:

1 Define the function signature.
2 Initialize parameters and set persistent variables.
3 Store a vector of voltages to be used when calculating the minimum eye height.
4 At the end of each back-channel training cycle calculate the minimum eye height and

write it to the back-channel communication file.
5 Update the training state.

The following sections will walk through the code used in the rxBCtrainingWrite MATLAB
function block. In the Rx block, click on the Rx_BCI_Write pass-through block and type
Ctrl-U to push into the Rx_BCI_Write pass-through block set up earlier. Double-click on
the rxBCtrainingWrite MATLAB function block, then Copy/Paste the code described in the
following sections.

Define the function signature

The function signature for the rxBCtrainingWrite block has 7 inputs and 1 output. The
inputs are:

• sampleV: The voltage at the CDR sample time.
• tapWeightsIn: The DFE tap weights array as defined in the DFECDRTapWeightsIn

Data Store.
• BCIStateIn: The back-channel state value from the RxBCIStateIn Data Store.
• sampleCounter: Count of total number of samples.
• uiCounter: Count of total number of UI.

4 Industry Standard IBIS-AMI Models

4-100

• SymbolTime: The UI (in seconds). This value is inherited from the Model Workspace
and therefore does not need to show up as a node on the MATLAB function block. To
remove this node from the MATLAB function block, the Data Scope has been set to
"Parameter".

• SampleInterval: Simulation step size (in seconds). This value is inherited from the
Model Workspace and therefore does not need to show up as a node on the MATLAB
function block. To remove this node from the MATLAB function block, the Data Scope
has been set to "Parameter".

There is one output:

• BCIStateOut: The back-channel state value output to the RxBCIStateOut Data Store.

The function signature was entered when initially creating the MATLAB function block
and so is already present.

Initialize parameters and variables

This section sets up the four constants needed for calculating the size of the back-channel
training cycle:

• sampBit: The number of samples in each UI.
• messageInterval: The length (in UI) of each back-channel training cycle. This value is

currently set to ~2 PRBS7 iterations.
• BCIwait: The delay time (in UI) before starting back-channel training. This value is

currently set to ~4 PRBS7 iterations.
• windowLength: The length of the window (in UI) used to calculate the minimum eye

height. This value is currently set to 1 PRBS7 iteration.

In addition to the constant values, this section sets up the 5 persistent variables used by
this function. Persistent variables retain their values between each call to this MATLAB
function. The 5 persistent variables are:

• Protocol: The protocol being used by this back-channel model.
• Sequence: A integer counter used to log the sequence of training events.
• State: The current back-channel training state.
• EyeHeight: The calculated inner eye height value (in Volts).
• vSamp: The sample voltage being reported by the CDR block.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-101

To initialize all parameters and variables for this block, Copy/Paste the following code into
the rxBCtrainingWrite MATLAB function block:

%% Setup
sampBit = round(SymbolTime/SampleInterval); %% Calculate Samples Per Bit
messageInterval = 256; %% Length (in UI) of back-channel training cycle iteration (~2 PRBS7 iterations)
BCIwait = 512; %% Delay time (in UI) before starting training(~4 PRBS7 iterations)
windowLength = 127; %% Length of window (in UI) used to calculate minimum eye height (1 PRBS7 iteration)

% Make variables available between time steps
persistent Protocol Sequence State EyeHeight vSamp

if isempty(State)
 if BCIStateIn == 1 % Off
 State = ['Off' 0];
 elseif BCIStateIn == 2 % Training
 State = ['Training' 0];
 elseif BCIStateIn == 3 % Converged
 State = ['Converged' 0];
 elseif BCIStateIn == 4 % Failed
 State = ['Failed' 0];
 else % Error
 State = ['Error' 0];
 end
end

Store vector of reported voltages

This section accumulates a rolling vector of voltages to be used in the minimum eye
height calculation. Assume that these voltages are symmetric around 0V, so the absolute
value is used.

To store the report eye voltage values, Copy/Paste the following code into the
rxBCtrainingWrite MATLAB function block:

% Accumulate rolling vector of voltages for minimum eye height calculations
if isempty(vSamp)
 vSamp = zeros(1, windowLength * sampBit);
end
vSamp = circshift(vSamp, 1);
vSamp(1) = abs(sampleV); % Assume symmetry and only use positive values

4 Industry Standard IBIS-AMI Models

4-102

Calculate minimum eye height and write to file

When training is enabled, after waiting the number of UI as defined by the constant
BCIwait the back-channel metrics are calculated at the end of each training iteration as
defined by the messageInterval constant. First the back-channel configuration is read
from the back-channel communication file, then the inner eye height value is calculated
and the results output to the back-channel communication file and the log file.

The calcalate the eye metrics and write to the communication file every back-channel
cycle, Copy/Paste the following code into the rxBCtrainingWrite MATLAB function block:

%% Write current state and eye metrics at the end of each BCI block
if uiCounter > BCIwait + 2 && mod(sampleCounter, (messageInterval * sampBit)) == 0 && BCIStateIn == 2 % Training enabled (Sequence=4,6,8,10,12,...)

 % Read setup used for last 16 GetWaveblocks from back-channel communication file
 bciRdFile = 'BCI_comm.csv';
 [Protocol, ~, ~, ~, FFEtaps, Sequence, State, ~] = readBCIfile(bciRdFile);

 % Calculate inner eye height from sampled voltage:
 EyeHeight = min(vSamp) * 2; % 2x since using absolute value.

 % Write new back-channel communication file with end of BCI-Block metrics
 bciWrFile = 'BCI_comm.csv';
 Sequence = Sequence + 1;
 writeBCIfile(bciWrFile, 'w', Protocol, numel(tapWeightsIn), numel(FFEtaps), tapWeightsIn, FFEtaps, Sequence, State, EyeHeight)
 %
 % Write to log file:
 logFileName = 'BCI_comm_log.csv';
 writeBCIhistory(logFileName, 'Rx', 'GetW', sampleCounter, BCIStateIn, numel(tapWeightsIn), numel(FFEtaps), tapWeightsIn, FFEtaps, Sequence, EyeHeight)

end

Set the training State

The last thing that needs to be done in by this MATLAB function block is to update the
State for the BCI_State Data Store.

To set the training state, Copy/Paste the following code into the rxBCtrainingRead
MATLAB function block:

%% Update State Out if State In changed
if BCIStateIn == 3 % Converged
 State = ['Converged' 0];
elseif BCIStateIn == 4 % Failed

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-103

 State = ['Failed' 0];
end

if strcmpi(State,'Off') || strcmpi(State,['Off' 0])
 BCIStateOut = 1;
elseif strcmpi(State,'Training') || strcmpi(State,['Training' 0])
 BCIStateOut = 2;
elseif strcmpi(State,'Converged') || strcmpi(State,['Converged' 0])
 BCIStateOut = 3;
elseif strcmpi(State,'Failed') || strcmpi(State,['Failed' 0])
 BCIStateOut = 4;
else %Error
 BCIStateOut = 5;
end

Save and close this MATLAB function block.

In Simulink, type Ctrl-D to compile the model and check for errors. Resolve any errors
before proceeding.

Run the Model and Verify results

The next step is to run the model and verify that the back-channel code is operating
correctly.

Set up simulation parameters

Before running the complete model, open the Stimulus block to set the stimulus pattern
used to test the model:

• Set PRBS to 7, so that a PRBS7 pattern will be used during simulation.
• Set the Number of symbols to 50000 to allow the back-channel training algorithm
sufficient time to complete.

Test proper opereration of Tx and Rx models

Run the model. While the model is running, observe the time domain waveform changing
as each of the tap settings is swept. When the simulation is complete the back-channel
communication file, BCI_comm.csv, should look similar to:

Protocol,DDR5,
numDFEtaps,4,
numFFEtaps,3,
DFEtaps,0.01000,-0.00500,-0.01000,-0.00500,

4 Industry Standard IBIS-AMI Models

4-104

FFEtaps,0.00000,0.85000,-0.15000,
Sequence,176,
State,Converged,
EyeHeight,0.612739,

Open the back-channel communication log file, BCI_comm_log.csv, in a spreadsheet
editor. Each row in the log file shows the Sequence number, which model wrote to the file
(Tx or Rx), the current Sample Count, BCI_State and calculated Eye Height. The last 7
columns in the log show the current FFE and DFE taps values being simulated. Observe
how the Eye Height changes as each value is swept, and the parameter value that gives
the largest Eye Height is set after each iteration. Note that the value of FFE0 is always
computed from the values of FFE-1 and FFE1.

Generate DDR5 Tx/Rx IBIS-AMI Model

The final part of this example takes the customized Simulink model and generates IBIS-
AMI compliant DDR5 model executables, IBIS and AMI files.

Open the Block Parameter dialog box for the Configuration block and click on the Open
SerDes IBIS-AMI Manager button.

Export Models

On the Export tab in the SerDes IBIS/AMI manager dialog box.

• Update the Tx model name to ddr5_bc_tx.
• Update the Rx model name to ddr5_bc_rx.
• Note that the Tx and Rx corner percentageis set to 10. This will scale the min/max

analog model corner values by +/-10%.
• Verify that Dual model is selected for both the Tx and the Rx AMI Model Settings.

This will create model executables that support both statistical (Init) and time domain
(GetWave) analysis.

• Set the Tx model Bits to ignore value to 3 since there are three taps in the Tx FFE.
• Set the Rx model Bits to ignore value to 50000 to allow enough time for training to

complete during time domain simulations.
• Set Models to export as Both Tx and Rx so that all the files are selected to be

generated (IBIS file, AMI files and DLL files).
• Set the IBIS file name to be ddr5_bc_txrx.ibs
• Jitter can be added if desired.

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-105

• Press the Export button to generate models in the Target directory.

Update AMI files if Desired

The Tx and Rx AMI files generated by SerDes Toolbox are compliant to the IBIS 6.1
specification, so all back-channel specific parameters have been placed in the
Model_Specific section of the file. If you wish to make the models compliant to the IBIS
7.0 specification, update the AMI_Version to "7.0" and move all the BCI_* parameters into
the Reserved_Parameters section of the file.

The BCI_State parameter has 5 states required for complete back-channel training,
however to make these models more user-friendly the end user only needs 2 states: "Off"
and "Training". To make this change, update the BCI_State parameter in each AMI file as
follows:

• Change (List 1 2 3 4 5) to (List 1 2).
• Change (List_Tip "Off" "Training" "Converged" "Failed" "Error") to (List_Tip

"Off" "Training").
• Note that this will not affect the operation of the model, only to the parameter values

visible to the user.

Test Generated IBIS-AMI Models

The DDR5 transmitter and receiver IBIS-AMI models are now complete and ready to be
tested in any industry standard AMI model simulator.

Model Limitations

When simulating with these models in an industry standard AMI model simulator, keep
the following limitations in mind:

• BCI_Protocol is not supported. These models have been hard-coded to a Protocol
named "DDRx_Write".

• BCI_ID is not supported. These models have been hard-coded to a BCI_ID named
"bci_comm", which means that each simulation must be run in a separate directory to
avoid filename collisions during simulation.

• These models must be run with a block size of 1024 for proper operation.
• Back-channel training must be enabled on both models for training to be enabled. This

is done by setting the BCI_State parameters to "Training".
• These models will operate correctly with any UI or Samples Per Bit values.

4 Industry Standard IBIS-AMI Models

4-106

References

1 IBIS 7.0 Specification, https://ibis.org/ver7.0/ver7_0.pdf
2 JEDEC website, https://www.jedec.org/

 Design DDR5 IBIS-AMI Models to Support Back-Channel Link Training

4-107

https://ibis.org/ver7.0/ver7_0.pdf
https://www.jedec.org/

